JOHANNES KEPLER
UNIVERSITAT LINZ

Netzwerk fir Forschung, Lehre und Praxis

Y
“nfy zuku“‘

#

X

%,

r e “"_1 pS ~
L] RUT ERPS Ly Y
@ L9
», Al

Dejne zuk

Supporting Context Awareness in Highly Dynamic Network Environments
Dissertation zur Erlangung des akademischen Grades Dr.tech.
in der Studienrichtung Informatik
Angefertigt am Institut fiir Systemsoftware
Von
Dipl.-Ing. Wolfgang Beer
Gutachter
o.Univ.-Prof. Dipl.-Ing. Dr. Hanspeter Mossenbock

o.Univ.-Prof. Mag. Dr. Alois Ferscha

Linz, 01.05.2004

Johannes Kepler Universitit Linz
A-4040 Linz * Altenberger StraBe 69 ® Internet: http://www.uni-linz.ac.at ®* DVR 0093696

Eidesstattliche Erklirung

Ich erklédre an Eides statt, dass ich die vorliegende Dissertation selbststdndig und ohne fremde
Hilfe verfasst habe. Ich habe keine weiteren als die angefiihrten Hilfsmittel benutzt und die aus
anderen Quellen entnommenen Stellen als solche kenntlich gemacht.

Linz, 2004

Abstract

The aim of context-aware services and applications is to react flexibly on the environmental
state. Traditional services and applications are completely independent from their environ-
ment and therefore not able to react on state changes in the environment. The introduction of
location-based services, which provide location-specific services to the users, represents the
first practical appearance of context-aware services. Location-based services take the loca-
tion information of the service client and return a location-specific service result.

Context awareness is not limited to the location information, but includes all sorts of in-
formation which are relevant to classify the situation of a service client.

This PhD thesis introduces a software framework that supports the collection and process-
ing of generic sensor data, in order to provide the information to services and applications.
The open framework architecture of the framework enables the use of different transport pro-
tocols to deliver the information. The software architecture also enables the integration of
new protocol implementations. As an example transport module a web service standard
based module was implemented. The integration of web service standards into the transport
layer offers language and platform independent service description and delivery for a multi-
tude of different service clients. With the discovery and lookup mechanism of the framework
service clients are able to discover service providers even in ad-hoc networks.

One of the main characteristics of the software framework is the possibility to map sen-
sorial state transitions with specific actions. Interpreted rules, which are defined by the ap-
plication designer or even by a user, realize the mapping between state transitions and the
actions. These rules define how the application reacts on a specific state. Through the inter-
pretation of the rules it is possible to change the rule repository or single rules at run time and
to change the application’s behavior dynamically.

To discover possible communication partners, the framework implements a role-based
classification mechanism. The role-based mechanism uses the collection of a service provid-
er’s service interfaces to decide in which role the service provider acts in an application.
Comparable software frameworks often use static classification hierarchies to classify com-
munication partners which leads to problems in ad-hoc networks.

The framework enables the creation of context-sensitive applications through XML con-
figurations. XML configurations simplify the use of visual development tools for designing
context-sensitive applications.

To demonstrate the framework, four example applications were developed and tested in
practice.

Zusammenfassung

Das Ziel von Kontext-sensitiven Diensten und Anwendungen ist es, auf den Zustand der Um-
gebung flexibel reagieren zu konnen. Traditionelle Dienste und Anwendungen sind von ihrer
Umgebung véllig unabhiingig und somit auch nicht in der Lage auf Anderungen geeignet zu
reagieren. Mit der Einfiihrung von ortsbasierten Diensten, die je nach Position und Ort des
Benutzers spezifisch konfigurierte Dienste anbieten, wurde der erste Schritt zu Kontext-sen-
sitiven Diensten realisiert. Ortsbasierte Dienste verwenden nur die Position des Benutzers,
um Informationen iiber die Umgebung des Benutzers zu sammeln und das Ergebnis von An-
fragen damit geeignet zu konfigurieren.

Kontext Sensitivitit bezieht sich aber nicht nur auf den Ort eines Benutzers, sondern
vielmehr auf alle Informationen die Aufschluf} iiber die aktuelle Situation eines Dienstneh-
mers geben.

Im Zuge dieser Arbeit wurde ein Software Framework erstellt, das es ermoglicht beliebige
Sensordaten digital zu erfassen und zu verarbeiten, mit dem Ziel die gewonnenen Informa-
tionen Diensten und Anwendungen zur Verfiigung zu stellen. Die offene Software Architek-
tur des Frameworks ermdglicht es beliebige Kommunikationsprotokolle fiir die Ubertragung
der Informationen zu verwenden und jederzeit neue zu integrieren. Durch die Integration von
WebService Standards ist die Beschreibung und die Ausfiihrung der, durch das Framework
angebotenen, Dienste fiir eine Vielzahl von verschiedenen Dienstnehmern gewéhrleistet.
Der Discovery und Lookup Mechanismus des Frameworks ermdglicht es, dass sich Diens-
tanbieter und Dienstnehmer auch in einem dezentral verwalteten Netzwerk finden kdnnen.

Zu den wichtigsten Eigenschaften des Frameworks zdhlt die Moglichkeit Zustand-
stiberginge von Sensoren mit Aktionen zu verkniipfen. Diese Verkniipfung wird in Form
von interpretierten Regeln angegeben, die der Anwendungsentwickler definiert oder auch
vom Benutzer selbst angelegt werden konnen. Diese Regeln bestimmen wie sich eine An-
wendung zur Laufzeit in einem bestimmten Zustand verhélt. Durch die Interpredation der
Regeln ist es moglich den Regelsatz oder einzelne Regeln zur Laufzeit zu verdndern um die
Reaktion der Anwendung dynamisch zu dndern.

Um mogliche Kommunikationspartner zu finden wurde im Framework ein rollenbasierter
Ansatz zur Klassifikation gewéhlt. Dieser rollenbasierte Ansatz verwendet die Summe der
Dienstschnittstellen eines Dienstanbieters um iiber dessen Rolle in einer Anwendung zu
entscheiden. Vergleichbare Software Frameworks verwenden statische Klassenhierarchien,
die aber in in dezentral verwalteten Netzwerken zu Problemen fiihren.

Das Framework ermoglicht die Erstellung von Kontext-sensitiven Anwendungen durch
XML Konfigurationen. Die Erstellung von graphischer Entwicklungssoftware wird dadurch
wesentlich vereinfacht. Zur Demonstration der Anwendung des Frameworks wurden 4
Beispielanwendungen erstellt und in der Praxis erprobt.

Danksagung

In erster Linie moche ich meiner Familie danken, die mir das Studium ermdéglicht hat und
mich immer unterstiitzte.

Natiirlich mochte ich hier besonders meinen beiden Betreuern, Prof. Mossenbock und
Prof. Ferscha, fiir ihre hingebungsvolle und aufopfernde Arbeit danken. Auch mochte ich an
dieser Stelle meinem Projektpartner Volker Christian sowie den Siemens Projektpartnern,
vertreten durch Lars Mehrmann, fiir die erfolgreiche und angenehme Zusammenarbeit dank-
en.

Danken mochte ich auch meinen Kollegen Dietrich Birngruber und Albrecht W68, sowie
der gesamten Mannschaft des Instituts fiir Systemsoftware, fiir eine sehr kreative und freun-
dschaftliche Zeit an der Johannes Kepler Universitit.

Ebenso mochte ich meinen Studienkollegen sowie Freunden innherhalb und auBlerhalb
der Universitdt danken.

Linz, im Mai 2004

Contents

1 INErOdUCTION cccovvunericiisreriecsssaniecsssnsecsssssssesssssassesssssssessnans 1
L LY (0] 5 07 1 [) o DRSSP 1

|8 € {1 USSP 2

1.3 Contribution of this TRESIScccvieiiiiiiiieeieeeeeee e e 3

LR @ 1011133 1< TSRS 4

2 Definition 0f TermS....cccoeiiiiiirniccssssericcsssannecssssssicsssssssecsssess 5
2.1 Context and CONtEXt AWATCNESSccuvveerrreeirreeirreeeirreeeireeesreeessreeessseesssseesssseesnnes 5
2.2 Representation Models for Context Information...........c.cceceeeevieriieciieneencieenenne. 6
2.3 Smart ENVIFONMENEScocieiiieiieiiieiieeieeiteete et eite et e seeeeteesaeeenseesseesnseenaeeenne 8
2.4 Pervasive COMPULINEcoveruierueetiniienieeteniteteeite st ete st ste et et sae et saeenaeessesneenees 10
2.5 Wireless COMMUNICATION.eeevierieeieentieeteerieeereeieeseeeseessseeseessseesseesssessseens 11
2.5.1 TEEE 802.11 (WLAN) ...ttt ettt e 12

2.5.2 TEEE 802.15.1 (BIU€toOth)......coeviiieiiieeiiieeieeeeeeeee e 14

2.5.3 TEDA e ettt 16

2.6 Wireless Object IdentifiCationccoeoveeiieniienieeiiieeie et 17
2.6.1 Radio Frequency Identification (RFID)cccccooiiiiiiiiiiiiiiciie 17

2.6.2 Ultrasonic Identification...........cccueeevieriieiiieniieiienie et 21

2.6.3 Infrared Identification............ccoevuieeiieiiieiiieiieee e 22

2.6.4 Vision-Based SyStems.........coceriirieiiiniiniinienieeeceeee e 23

2.7 Ad-HOC NEIWOTKS ...cuviieiiiieeiie ettt ettt eee et e aeeeveeeaaeesnsaeesnseeenes 24
2.8 Peer-To-Peer COMPULINGcceeevieriieeiieiieeie ettt ettt see et saeeebeesseesaaeens 27
2.8.1 P2P Discovery AlgOrithms.........c.cocuieiiiiiiiiiiiiiieie e 28

2.9 TNttt ettt et h et ettt et e b ennen 29
2.9.1 Jini discovery and 100KUP.........cccureiiiriiiiiiiieeiteeee e 30

2.0.2 LRASES c.uuvveieeiiiee e ettt ettt e ettt e e e e e e e e e et e e e e naaeeeennaaaeeennnaes 32

2.9.3 JINT SUMMATYcciiiiiiiiieeiie ettt et e e saeeesaeeesaeessaeesseeesaseeenns 32

3 State Of the Art...cceeiieninriienisssnnicssssnnicsssssssesssnans 33
3.1 The PARCTAB PrOJECt ...coovieiiiieieiieiesieeieeee ettt 33
3.1.1 PARCTAB system architeCture...........cccueeervieriieeniiieeniee e 34

3.2 The ConteXt TOOIKIt........ccviiiiiieiiieiierie ettt 35
3.2.1 Context Toolkit Example Applications..........ccccueeevuveeecreeeriieerieeeieeeene 37

3.3 The Sentient Information Framework..............ccoovveeiieiiiniienieeiieiecie e 38
3.4 The CoOltOWN PrOJECt....cccuiiiiieiiieiieie ettt 41
3.4.1 Pushing Web Technology into Physical Objectsccccceevveervieennnenee. 41

4 The SiLiCon Context Frameworkiceieeinennennsensecnsnecsesnssesssecsssecssesssaceses 45
4.1 COMOCEPLS. ..ttt ettt ettt et et b e es 45

4.1.1 Retrieval of Raw ConteXt Dataeeeeeeeeeeieeeeeeeeeeeeeeeeee e 45

4.1.2 Object Description with Entitiesc..ccoceevieviiiiniiinieninicniecceeeeee, 47

4.1.3 Event-Based CommuniCation...........cccueeiuierieniiienieiieenieeieenie e 48
4.1.4 Dynamic Definition of Context Scenarios through Rules....................... 49
4.1.5 Discovery of Entities in Local Environmentsccccceevvieeneenieenenne. 50
4.1.6 Configuration of Context Applications with XML Scripts............c........ 50
4.1.7 Resource and Performance Optimization.............cceeevverveecieeniienveennene. 50

4.2 Framework ATChItECtUICccuvieiiiieiiieeie ettt e 51
4.3 Lookup and Discovery MechaniSmccccueeviieenieeeniieeeiie e siee e 53
4.4 Pluggeable Transport MOAUIEScccvieriieiiienieeiiesie et 58
4.4.1 Integration of Web Service Mechanismsccccceceeeeeneriienienenecneenne. 62

4.5 Role-Based Classification with Attribute Templates...........ccccevvcvereeviieenveennnenn. 71
4.6 Interaction Scenarios Defined by ECA Rules........c.ccccveveiieviiiiiiniiniicieieeen 74
4.6.1 Event Handling.........c.coouiiiiiiiiiiiieieeee e 75
4.6.2 Syntax and Semantics of SiLiCon Context Rules..........c.cccccvveveviennnnnn. 79
4.6.3 Error Handling within Context Rules............cccceeviiriiienieniieiieeieeiene 84
4.6.4 Runtime Deployment of Context Rulesc..ccoceevieniiniriiniininiicnnene. 86

4.7 HTTP LoggIng MOdUIEccccviieiiieiieeeeeeeeee et 88
S COMPATISON auueerurerieeirrensnnssseesnnsssessanssssesssnsssassssasssssssssssssssssssssssssasssssssssasssssssassssasssns 92
5.1 Classification of Context-Aware SOftwarecccveevveeeiiieeciee e 92
5.2 Universal or Practical World Model ASSumption..........cccceeeveeeiieneeeieeneennnens 93
5.3 AdAPLatiON....cccuiiiiieiiieeieeie ettt ettt et ebe e e e nbeeneeenbaen 94
5.4 Web COMPLANCE.couiiiiiieiinitiieeie ettt ettt 95
5.5 SCALADIIILY ...vieiiieiiieiiecie ettt e saa e e e e naeenraens 96
5.6 Mobile Device Portability.........cceecuiiiiiiiiiiiieciiesie ettt 97
6 Context ApPplication SCENATIOSccevurerrruresssarcssnrsssanessssnssssssesssssssssssssssssssssssssssssssnes 99
6.1 A VRML Control SCeNArio..........cocueeriiiieinieiiieniieeieesiteeeeite et 99
6.2 A Context-Sensitive Emergency SCenario........c..ccoeeevereeverieneenieneeneeneeneenne 101
6.3 A Context-Sensitive Office SCenario..........cceeeeeueenieiiiienieniiiieeeeeeeen 103
6.3.1 HardwWare SEUDcceevvierieriieiierie ettt ettt e eae e seeeenbeesaae e 106

6.4 An Industrial Maintenance SCENATIO.couerverierierienieeieneeneeie et 109
6.5 A Mobile Robot Control SCenariococeeveerieenieiiienieeeeeeeeeee e 113
6.5.1 HardwWare SEtUDcceeevieriieriieiiesie ettt ettt seaeebe e e 113

T CONCIUSIONS ..cuueerenneiisneeiinneisnensssnecsssnesssanecssseessseessssssssssscssssessssessssssssssssssssssssssasess 115
7 B 111010 T PSPPI 115
7.2 FULUIE WOTK ..ottt 116
7.2.1 Visual Builder Tool for Context SCeNarioscccueeeeuveerveeesveessnneenns 116

7.3 Security ConSIAETAtIONSccueeervieerieeeiieeeiteeesieeesreeesereeesreeeeseeessseeessseesssseeens 116
7.4 Rule Consistency Checks and Advanced Reasoning...........ccccceeeveeciveneneneennen. 117

8 RETCICIICES .eeeuererrenneeereeeeeereeneesereesessersssessessssessessesssssssssssssssasssssssasssssssasssssssassssssssnnes 118

1 Introduction 1

1 Introduction

1.1 Motivation

Ubiquitous and pervasive computing [Wei93] are the vogue terms of the early twenty first
century. This sort of techniques stand for massive use of embedded systems, that should act
as smart as possible to fulfil specific tasks for the users [Wei91]. Environments that are
stuffed with digital equipment would not attract any user, except it is possible to invisibly
integrate all the digital technologies into the users natural environment [Wa02]. A short his-
toric overview about digital technology development explains the motivation to move for-
ward to pervasive computing systems and environments.

Digital technology has changed very much in the last decades. At the beginning of the dig-
ital age mainframe computing was the state of the art. After the hardware prizes decreased
dramatically computer scientists were able to buy computers for their own: the personal com-
puting area began. At this time the relation changed from many users sharing one digital de-
vice to one user per digital device. As the size of the personal computers decreased, the
mobile computing area started. In the current decade, a user owns a collection of different
digital devices, which are specialized for certain tasks. A mobile phone is used to communi-
cate globally while an organizer is used to store contacts or meeting information and to take
small notes. Additionally, a user often owns a desktop computer for tasks that require more
processor power or hardware support (e.g. a printer or a scanner) as well as a laptop device
for mobile work. To support mobility in combination with global availability radio based
wireless network technology emerged. Laptops, PDAs, mobile phones and a multitude of
specialized mobile devices replaced the typical workstation computer. If we summarize the
development we can observe that the digital devices became more and more personalized to
solve problems for the user. At the beginning many users shared a common mainframe with
probably different personal configuration profiles. Now, every person owns a specific set of
digital tools that are exactly personalized for the user.

The next step ahead will improve the personalisation of the user’s digital environment to
act some sort of smart according to the user’s demands. Some people are even speaking about
environments where thousands of smart dust devices work together to achieve a common
task [Wa00]. On the other side, it seems to be hard to enable traditional applications to run
in such insecure, dynamic and short living network environments. One of the major problems
is to define an abstract application layer on top of these dynamic network environments. It is
impossible for a programmer to design a static application that is able to react on every situ-
ation that may occur within an environment. It is getting even worse when the application is
supposed to travel through unknown environments.

Another important aspect of smart environments is targeting the human computer inter-
action (HCI). At the moment, a user, who is using a mobile device, is very much limited ac-

1 Introduction 2

cording to his input and output possibilities. Every digital device tries to offer as much input
and output interfaces as possible. As the number of embedded devices increase the need for
input and output device sharing grows. The user’s attention is a limited resource that does
not scale in proportion to the number of devices. The massive use of digital technology
should not set the user under physiological pressure [Ar99].

As a matter of fact, the technology has to disappear in our environments and has to react
implicitly to the user’s personal demands. Pervasive and ubiquitous computing try to solve
some of these problems.

This work focuses on context-aware computing [Sch94] in combination with ad-hoc wire-
less networks, which should be understood as a logical consequence of pervasive environ-
ments. In order to act implicitly on existing problems it is necessary to obtain some
background information about involved entities. It is necessary to identify relevant entities
and their properties as well as the services they provide for solving a given problem. The
identification process is not necessarily bound to a global network access, as modern wireless
technologies provide communication between single peers. This communication method,
called ad-hoc communication, enables the creation of locally relevant networks that are not
necessarily a part of a global network. One example for such a sort of networks is a personal
area network (PAN), where all personal digital devices build a local ad-hoc network. This
thesis mainly focuses on the dynamic delivery of context information in wireless ad-hoc net-
work environments and proposes new methods for modelling context-sensitive interaction
scenarios. A developer or a user, in this work also called scenario designer, should be able to
easily create context-aware scenarios, where a group of digital devices cooperate to solve a
given problem. A software middleware should provide an abstract representation of digital
and non-digital devices, as well as sensor and actuator abstractions. A scenario designer is
able to combine these abstractions to create new context-aware applications.

1.2 Goals

The purpose of this work is to investigate the implementation of a software middleware that
supports the delivery of context information and therefore the modelling of context-sensitive
applications and scenarios. The delivery of context information has to work in traditional net-
works with centralized organisation, as well as in unmanaged ad-hoc networks. In order to
handle the two basic problems of pervasive environments [He01] the context framework has
to solve the following basic requirements:

* The integration of new hardware sensors and actuators, which are necessary to
gather context information, has to be simple. Furthermore, the reuse, extension and
combination of already existing sensors and actuators has to be supported to enable
the convenient and rapid development of context-aware applications.

» The delivery of context information should be completely event-based.

* The dynamic exchange of context information between different entities should be
possible and changeable at runtime. In order to provide more flexibility in the
interaction of entities, an ECA (Event Condition Action) rule interpreter should be
able to intercept context events and react on defined conditions.

1 Introduction 3

» The identification of appearing entities inside local environments should be as
flexible as possible. Such entities should not be classified by a central hierarchical
class model, but by identifying certain roles in which they act at the moment of
classification. By adding or removing properties of an entity it should be possible
to change the entity’s role at runtime.

* Most of the time, ad-hoc networks are heterogeneous sets of devices with many
different physical communication mechanisms and protocols. To enable a broad
spectrum of communication possibilities it is necessary to implement flexible and
plugeable transport protocol modules. These transport modules should be able to
coexist and it should be possible to integrate new transport modules. To support
different encodings for different platforms it is necessary to specify an encoding
module for every transport module.

* To enable the use of context information on different platforms and different soft-
ware environments a context scenario should be configurable in a platform and
programming language independent format.

+ Standard applications such as chat and network conferencing clients, workflow
management systems, entertainment environments, or even health and security
systems can benefit from context information gathering. Since modern applica-
tions usually do not maintain context information the context middleware has to
provide a common platform-independent interface to make this information acces-
sible for many different applications. The requirement is to provide a WSDL
description for enabling access to context information through SOAP-encoded
messages sent over a HTTP transport module.

+ Context information processing on mobile devices is limited in terms of processing
power and storage. Furthermore, it is nearly impossible to develop an application
directly on the mobile device. The development process has to be performed on a
device with richer input and output possibilities and then the application has to be
sent remotely to the mobile device. To cope with such limitations the context
framework has to perform all tasks, which are running on the mobile device, with-
out the use of heavy-weight libraries and performance-critical operations.

1.3 Contribution of this Thesis

The contribution of this thesis is the implementation of a new software framework architec-
ture which manages the context information life cycle. This new architecture hides the com-
plexity of gathering, processing and transporting of context information for context-aware
applications and services. The architecture is designed to be open for any new module im-
plementations concerning the transport protocol, the event encoding, and the lookup and dis-
covery mechanism. The framework architecture allows users to plug in or change these
modules at runtime. The architecture is designed to operate in ad-hoc networks as well as in
traditional networks. The exchange of context information is therefore realized through a
peer-to-peer mechanism which allows the direct communication of two devices without any
central infrastructure such as a central server.

Another major contribution of this thesis is the use of interpreted ECA (Event Condition
Action) rules to realize state transitions of entities. These rules allow programmers to define
arbitrary entity interaction scenarios. Since ECA rules are interpreted, a scenario designer is

1 Introduction 4

able to deploy and to change the rule repository at runtime. Changing the rule repository
means that the behavior of a scenario changes at runtime. It is even possible to change the
rule base as a side effect of a state transition.

The third contribution of this thesis is the use of a role-based classification mechanism to
identify entities that appear in an environment. This classification mechanism allows con-
text-sensitive applications to define new roles and to use them to specify new ECA rules. The
role-based classification mechanism was specifically designed to work in highly distributed
ad-hoc environments where a hierarchy-based classification mechanism would face signifi-
cant consistency problems.

Furthermore, this thesis shows that the integration of web service standards into classic
context awareness software frameworks has significant advantages.

1.4 Outline

Chapter 1 introduces the area of context-aware computing as well as the challenges, goals
and requirements of our research.

In Chapter 2 the terms context, context awareness, smart environments, ubiquitous and
pervasive computing are introduced and discussed in detail. This chapter also explains how
context information is gathered and transformed to fit into a specific context model. The sec-
ond part of Chapter 2 introduces basic technologies, that are relevant for our research, e.g.
wireless communication, wireless object identification, ad-hoc networks, P2P communica-
tion and Sun’s Jini technology.

In Chapter 3 the state of the art in context-aware computing is presented. Four different
research projects are reviewed in detail: Xerox PARC’s PARCTAB project, GATech’s Con-
text Toolkit, AT&T’s Sentient Computing project and HP’s CoolTown project.

Chapter 4 gives a detailed view on our SiLiCon framework, its architecture and its imple-
mentation. This chapter described the main parts of our research.

Chapter 5 compares the SiLiCon framework with the research projects that were already
introduced in Chapter 3, according to some interesting aspects.

In Chapter 6 a collection of context-aware demonstration scenarios are presented and it is
shown how a scenario designer is able to configure a new context scenario.

Chapter 7 contains concluding remarks as well as some hints how future innovations in
the area of context-aware computing could look like.

2 Definition of Terms 5

2 Definition of Terms

This chapter gives a short overview about the terms and definitions that are used in this thesis
to explain the area of context and context awareness.

2.1 Context and Context Awareness

The term context has various meanings in different research areas. In this work it addresses
the information that could possibly be relevant for an object that performs a certain task.
Most of the time, a task depends on context information, which has to be collected from oth-
er objects. In smart environments this means that this information has to be passed between
different embedded devices over a network. The term context-aware software was first used
in the Xerox PARC research project PARCTAB in 1994 [Schilit94]. In this work the term
was defined and used for software that is able to adapt according to its actual location, the
collection of nearby people, hosts and accessible devices. Also the possibility to track the
changes of context information over time, in other words to store historic context informa-
tion, was mentioned. Over the years, different research groups enriched this basic definition
of context and context-aware software. Brown et al. [Brown], for example, widened the
scope of context information to temperature, time, season and many other factors. Due to the
fact that the number of context information factors is nearly unlimited, the definition of con-
text by Anhind K. Dey is one of the most commonly used:

“Context is any information that can be used to characterize the situation of an entity. An
entity is a person, place, or object that is considered relevant to the interaction between a
user and an application, including the user and application themselves.” [Dey]

This definition of context specifies that context contains any kind of information about an
entity in order to understand its situation. So context information is not limited to location
information, but could also mean information about the social situation of a person or the per-
son’s mood. Usually, such a sort of context information is hard to collect, but there are a rea-
sonable number of research projects that try to collect even this kind of information. An
interesting fact about the above definition of context is that Dey identifies three base classes
with which all objects can be classified: person, place and object. This kind of classification
has practical reasons but is also fixed to a location-dependent view of context information.
For simple scenarios this classification is easy to implement and performant, but complex
scenarios cannot be created. What if an object that can be located in a certain place is itself
a place, such as a bag or a car? Are animals identified as objects?

For this work we can reduce Dey’s definition to the following part:

“Context is any information that can be used to characterize the situation of an entity.”

2 Definition of Terms 6

Additionally, context information should be viewed in a completely application-independent
way. It should be the application’s responsibility to select relevant context information and
to interpret it according to the task that the application has to perform. The concrete classifi-
cation of objects should also be the application’s responsibility, because different applica-
tions could have a different view on the same object.

Context-sensitive applications differ from traditional applications according to their new
kind of life cycle. Schilit identified a context computing cycle that contains three basic steps.

» Discovery: This involves the identification of entities that are relevant for the
application’s tasks. In the first step, a context-aware application has to discover and
to explore its environment in order to get information to work with. According to a
human viewpoint, the discovery is mostly focused on the local environment,
because information around the actual physical location is considered more impor-
tant than anywhere else.

» Selection: A context-aware application has to filter the information that was dis-
covered according to its specific needs. The selection process is the most important
and most problematic part within the context computing cycle. It is no problem to
receive a multitude of different sensor data, but the identification of specific infor-

mation, that has the required semantic value, is only solvable within specific con-
straints.

» Use: If an application identified a relevant entity and was able to select a specific
information, the application is able to use this information to change its configura-
tion.

In this thesis all three steps of the context computing cycle are described in detail and a sys-
tem architecture is proposed which supports the discovery, selection, and use of context in-
formation.

2.2 Representation Models for Context Information

In this section, it is shown how the representation model of context information influences
the design of the software middleware framework. In order to find general terms, describing
different world models, it is necessary to highlight existing notations and their affinities to
the approach in this work.

The representation model of context information is called the world model, because it de-
scribes entities and their interaction. The definition of world model is:

“A world model defines how the description of entities and their relation can be repre-
sented in machine readable and changeable form.”

World models are defined to provide machine readable information about whole application
environments in order support context-aware self configuring applications. Fig. 1 describes
the role of a world model within a software framework that supports the development of con-
text-aware applications. The real world contains a collection of objects (objects 1-n). A small
spectrum of aspects of these real world objects can be gathered with the use of sensors. In-
formation about these objects has to be stored in machine readable form. Therefore, the

2 Definition of Terms 7

world model defines structures to create a representation of these objects which can be
sensed or about which we have some sort of description. The context framework middleware
is responsible to retrieve the sensed information about the objects and to store it into a data
structure the world model defines. A good representation of a collection of objects also con-
tains information about the relation between the different objects. A relation is a state transi-
tion that influences the state of another object. These relations are shown between object 1
and object 2 in Fig. 1. An example for a relation between two objects could be a person that
changes its location. When the location of the person changes all related objects have to be
informed about the state change. The context framework middleware uses the machine read-
able description of objects in order to trigger actions through actuators or to deliver parts of
the representation to a multitude of different context-aware applications. The framework
middleware, generally, is responsible for the gathering, mapping, representation and the
transport of the sensed data into its world model. A context middleware tries to remove the
complexity of writing context-sensitive applications through wrapping and hiding the con-

text information life cycle.
b l context aware
application

|
|
|
|
|
|
|
|
t
|
|
|

\ < - N
world

. model |
K 4

context framework middleware (interface

actuators

real world sensors

object 1

Fig. 1 World models represent a small view on object relations in the real world

The world model contains every information a context-sensitive application is able to re-
trieve. Different research groups, like the SemanticWeb group or various Ontology research
projects, try to find general structures and types of objects in order to create representations
of'real world objects [Onto][SeWeb]. Such general structures are not only necessary to create
a consitant representation of a real world situation but enable the interoperability of different
context frameworks. Structured, machine readable representations of digital and real world
scenarios are the first step towards intelligent web search algorithms and context-aware ap-
plications and services.

The implemented middleware is able to manipulate a scenario represenation at runtime.
This basic relation is shown in Fig. 2. Sensors gather information from the real world which
are mapped into the world model through the use of the middleware framework. On the other
side, the middleware framework is able to change the state of the real world objects with ac-
tuators. Context rules are able to express the relation between the different objects. The con-
text world model always represents a more or less small view on the real world.

2 Definition of Terms 8

Fig. 2 shows a context information life cycle that represents the information flow inside
the project’s middleware. The context information life cycle was defined in [Fer03]:

@ Context Sensing

— time-triggered or event-triggered acquisition
of low level context information

time event

context transformation

‘ Context Transformation
aggregation and interpretation of low-level
context information

Context Representation
high-level context information — data structures represent the high-level
context information

‘ | Context Rule Repository

ECA context rules implicit or explicit triggering of context events

Actuators

@ components that control the environment

Fig. 2 Context information life cycle

Due to the different requirements of context-related research projects, different world mod-
els resulted. While the HP Cooltown [HPO1] project developed a world model that is based
on three kinds of objects (Person, Thing and Place), the Context Toolkit [Dey01] does not
classify its information within such a basic hierarchy.

One of the reasons why so many different world models have been devised is that the
projects focus on specific areas in the context information life cycle. The CoolTown project
focusses on the context information’s web representation. In contrast, the Context Toolkit
tries to support the context transformation process for the programmers.

2.3 Smart Environments

Smart environments, also called intelligent spaces, appear to be the next step towards a nat-
ural interaction between users and digital devices [Oxy]. Places or environments invisibly
filled with a multitude of different sensors and actuators such as cameras, location trackers,
identification transponders, surround sound systems, displays, or public media walls [Web-
Wall] and many more, try to help the user to solve certain tasks. The goal of this technology
is to improve the interaction between the user and its digital devices to happen implicitly and
unconsciously, so that the user does not realize how complex the interaction scenarios in the
background are. The human-computer interaction could be performed by natural input tech-
nologies like gesture recognition, speech recognition, human emotion recognition, human
action sequence recognition, or even through tangible interfaces and artifacts [Ishii97]. The
vision is that an optimal interaction between an embedded system and a human user would
demand no extra information displayed or typed into a static interface, which would need the
user’s full concentration. A human user could interact with his digital environment as he
would do with a human being. Unobstrusively, the user should be able to control a collection
of embedded devices such as sensors and actuators.

2 Definition of Terms 9

Applications of smart environments are not limited to office rooms but unfold their im-
mense possibilities also in areas like transportation, automotive, logistics, industry, home
and even in personal area networks, which could be embedded in smart clothing. One of the
reasons why the pervasive technology emerges to improve personal computing, is the incred-
ible progress in chip design. Today, single chips can host entire digital systems that are easy
to embed because of their tiny sizes and low costs. The era of Pervasive Computing was born.
IBM’s definition of Pervasive Computing is:

‘Convenient access, through a new class of appliances, to relevant information with the
ability to easily take action on it when and where you need it’

Pervasive Computing is based on four fundamental characteristics, which are [PerO1]:

* Decentralization: The change from a centralized digital system like a mainframe,
to a strongly decentralized computing environment. Today, the development goes
from a Personal Computer to a multitude of tiny or embedded devices, which inter-
act to solve the users’ problems (like a headset, cell phone and a PDA).

* Diversification: Diversification means the shift from a single universal device,

which is able to perform a large variety of tasks from entertainment to professional
computing, to many specialized devices.

* Connectivity: Pervasive and Ubiquitous Computing environments have a strong
demand for connectivity and communication. Connectivity between traditional
computing systems requires a wired network between static digital nodes. Connec-
tivity in pervasive environments means to connect a multitude of heterogeneous
mobile devices, operating systems and system architectures with a wireless net-
work.

» Simplicity: Decentralization, diversification, and connectivity provide a lot more
possibilities than traditional paradigms but on the other side these characteristics
also complicate the use of such devices for human users. The need for simplicity is
a direct consequence of the increasing complexity of pervasive systems. Conven-
ience, ubiquity, and intuitiveness are the requirements modern environments have
to fulfil.

The area of grid computing is often mentioned in the same context as pervasive computing.
Grid computing tries to answer the question how an application can be distributed on a grid
of processors. The grid computing aspects are considered important for pervasive comput-
ing, because a distributed sensor and actuator network poses similar distribution and syn-
chronisation problems. In smart environments different embedded devices could solve
specific parts of a problem. In fact, every embedded device has its own specialized task. A
GPRS mobile phone could solve the global communication task, while an embedded location
tracker with six degrees of freedom could provide exact location information. Other exam-
ples of grid computing problems are the transfer of performance-critical calculations from
PDAs to more powerful devices or the distribution of calculations among different embedded
devices.

2 Definition of Terms 10

2.4 Pervasive Computing

The term Pervasive Computing stands for the philosophy to embed limited intelligence into
objects that surround us [Ar99]. Ubiquitous Computing on the other hand means that digital
services and applications are mobile and can be consumed everywhere. Often it is not really
clear how in which aspects the research areas of Pervasive Computing, Ubiquitous Comput-
ing and Mobile Computing differ. Pervasive means that digital technology diffuses through
every part which implies high embeddedness. Mobile Computing describes environments in
which the user is able to use mobile devices and wireless networks but does not imply any
use of embedded devices. Most of the modern applications that are running in smart environ-
ments include aspects of all three computing philosophies. Therefore, it is hard to identify
which part of the hardware or software is associated to one philosophy. Fig. 3 shows how
these computing philosophies can be distinguised according to embeddedness and mobility.

high
embeddedness

Pervasive Computing Ubiquitous Computing

low mobility high mobility

traditional
Personal Computing Mobile Computing

low
embeddedness

Fig. 3 Differences between Pervasive, Ubiquitous, and Mobile Computing

Pervasive Computing implies that everyday objects can get the possibility to communicate
and to discover the environment. The idea is, that the technology should not visibly change
an environment but should improve common objects below the visible surface. Examples for
such changes can already be found in our daily life. One of the first applications of wireless
object identification was implemented for supermarkets to prevent the customers to take
products without paying them. A primitive mechanism changes the state of the product from
not paid to paid when the customer visits the cash box. For the customer it seems as if the
system did not change at all.

Another example targets the automotive industry where smart components should im-
prove the safety of vehicle drivers. Limited intelligence is put into some parts of vehicles in
order to warn the driver when certain measurements are not within specified limits. One ex-
ample is the use of embedded chips inside the tires to measure the pressure and other critical
values. All the tires communicate their measurements to the car which decides how and when

2 Definition of Terms 11

to contact the driver or the mechanic. Different automotive companies are already using
these smart tires [SmarTire].

Pervasive systems differ from traditional systems by the fact that the user does not have
to be in front of an input/output interface and does not have to focus his attention. Pervasive
systems are meant to function with a minimum of supervising by the user, which means that
these systems demand less concentration from the users. To solve problems without the us-
er’s attention such systems need information about their environment (context information)
and the possibility to communicate and to share this information. Many of these ideas were
already mentioned by Mark Weiser in his article “The Computer of the 21st Century”
[Wei9l].

One of the most important aspects of pervasive computing was not mentioned so far. The
fact that many objects of our daily life get some sort of specific intelligence to perform op-
erational tasks leads to the question of who controls an environment, or more general, how
the need for security and safety should be solved in pervasive environments. As security tar-
gets the issue of not sharing critical information with the wrong people or devices, safety asks
the question how such systems may change the user’s situation. How smart devices and en-
vironments will change the human’s safety is hard to discover, due to the fact that the systems
are steadily growing and are already taking control over some areas of our daily life. Most
people already depend on smart devices embedded in their cars that take control when the
car is in a critical situation (ABS, ESP, air bags). Other components support the user to con-
trol the vehicle (drive by wire). So it can be realized that already today smart components
have taken over the control in every days life and that embeded intelligence is already reality.
The question how security issues could be handled in such environments is treated in Chapter
7.3.

2.5 Wireless Communication

As mentioned before, communication technology and network protocols as well as informa-
tion-encoding mechanisms are the basic principles on which context-aware computing is
built. In order to understand the problems of working in heterogeneous network environ-
ments, this section gives a short overview about the latest developments in wireless network
technology as well as in wireless identification technologies.

Traditional applications were based on wired networks connecting static base stations
with fixed network addresses. Due to a shift from static workstations to mobile computing
wireless connections became more and more important. Wireless networks reach from infra-
red connections, also known as IrDA (Infrared Data Association) connections which operate
in direct line of sight around 1,5 meters, to globally available radio-based networks like the
GSM (Groupe Special Mobile), GPRS (General Packet Radio Service) and UMTS (Univer-
sal Mobile Telecommunications System) standards. The most popular wireless radio-based
data communication technology today is the /EEE 802.11 standard family (802.11a-g) for
radio-based local area networks and the IEEE 802.15.1 standard, also known as Bluetooth,
for personal area networks. Other radio-based local area network standards are IEEE
802.15.4, called ZigBee, for extremely simple hardware environments, IEEE 802.15.3a and

2 Definition of Terms 12

DECT (Digital Enhanced Cordless Telecommunications). All these radio-based communi-
cation standards differ according to their application, communication range, energy con-
sumption, network topology, bandwidth and latency, connection setup time, and scalability.

Another important aspect, is that wide area radio networks like GSM, GPRS and UMTS
communicate in frequency bands that are licensed by the government. Local and personal
area radio networks like the 802.11 family and Bluetooth use the /SM (Industrial, Scientific
and Medical) frequency band (2,4 GHz) which can be used without any restriction. Bluetooth
was originally not designed as a networking technology, but as a cable replacement technol-
ogy. At the moment Bluetooth is used for nearly every purpose, also for personal area net-
working. The fact that the ISM band can be used without having to obtain a license lead to a
massive use of ISM band devices in recent years.

A Frost&Sullivan marketing study [Frost] showed that in 2003 over 70 million digital de-
vices with integrated Bluetooth support existed. In 2004 this number will grow to about 120
million devices.

The following subsections describe the most important radio-based wireless network
technologies in more detail now.

2.5.1 IEEE 802.11 (WLAN)

The IEEE 802.11 standards, often called wireless Ethernet or WLAN, have evolved into a
wireless replacement of the typical wired Ethernet scenario. The first specification in 1997
defined a maximum data rate of 2 MBit/s. Today, the 802.11a standards achieve a data rate
of 54 MBit/s and the 802.11b standards about 11 MBit/s. The IEEE 802.11 standard family
is one of many IEEE 802 network specifications that share the same layered architecture
[MoCo]. The network layer of the ISO/OSI seven layer architecture can therefore always use
the same interface irrespective of which underlying protocol is used (e.g. Ethernet, WLAN,
Token Ring). Fig. 4 shows the protocol architecture layers of the WLAN standard.

ISO/OS| 802.2 Logical Link Control (LLC)

Data Link Layer

802.11 Media Access Control (MAC)

802.11 Physical Layer Convergence Protocol

ISO/OSI (PLCP)
Physical Layer
(PHY) PMD 802.11 PMD 802.11 FHSS PMD 802.11 DSSS
Infrared Frequency Hopping Direct Sequence
Spread Spectrum Spread Spectrum

Fig. 4 IEEE 802.11 protocol architecture

Fig. 4 shows that the physical layer of 802.11 is divided into two different layers: PMD
(Physical Medium Dependent) and PLCP (Physical Layer Convergence Protocol). The
PMD layer offers physical medium-dependent access for infrared, FHSS (Frequency Hop-
ping Spread Spectrum) and DSSS (Direct Sequence Spread Spectrum) communication, while
PLCP provides a medium-independent interface for the MAC (Medium Access Control) lay-

2 Definition of Terms 13

er, which manages the package transport from one network interface to another through a
shared transmission channel.

» FHSS uses the frequency hopping mechanism to avoid collisions with other

WLAN devices. The baseband is divided into 79 channels, which are changed in a
random order.

* DSSS uses the CDMA (Code Division Multiple Access) mechanism, which enables

multiple transmissions on the same frequency channel for more than one transmit-
ting device. The different signals are multiplexed with the help of device-unique
codes and are demultiplexed at the receiver’s side. The DSSS mechanism is more
stable with respect to collisions than the FHSS method and it allows more than one
transmission per frequency channel. In modern WLAN devices the DSSS method
succeeded the FHSS method.

Another important aspect of WLAN devices are the different operation modes that are de-
fined by the IEEE 802.11 standards:

Infrastructure mode: The infrastructure mode allows the association of WLAN
client devices (called Access Points) to a central base station. Access Points are
wireless routers that connect the wireless client devices to a wired network. The
communication of two wireless client devices, which are located in the same wire-
less area (hot-spot), is also managed via the Access Point. The wired network
between the Access Points is also used to deliver roaming information about
mobile WLAN clients.

Ad-hoc mode: The ad-hoc mode of WLAN devices allows the connection of
devices which are in communication range. If no higher level packet routing proto-

col is used the stations can only communicate with other stations that are in com-
munication range.

2 Definition of Terms 14

2.5.2 IEEE 802.15.1 (Bluetooth)

The IEEE 802.15.1 standard was originally designed as a cable replacement between digital
devices. There are three main application scenarios for Bluetooth connectivity:

» Bluetooth access points operate as bridges between wired and wireless networks.

* Bluetooth is used to build spontaneous ad-hoc networks, called Piconets, to com-
municate without central control.

» Bluetooth is used as a cable replacement between digital devices.

Bluetooth operates in the same ISM frequency band as IEEE 802.11 devices and microwave
ovens. Therefore these devices interfere with each other. To solve this problem, Bluetooth
uses frequency hopping to avoid transmission collisions. The available frequency band (83,5
MHz) is divided into 79 channels, each of which having 1 MHz bandwidth. The frequency
hopping procedure randomly changes the transmission channel 1600 times per second (fast
frequency hopping). With the Gaussian Frequency Shift Keying (GFSK) mechanism Blue-
tooth offers a maximum data rate of 1 Mbit/s [BrO1].

Because Bluetooth was designed as a cable replacement technology the connection range
was originally defined to be less than 10 meters. Today, many manufacturers offer Bluetooth
devices with higher transmission power in order to reach distances around 50 to 100 meters.

Bluetooth distinguishes between two kinds of connections: Synchronous Connection-Ori-
ented Links (SCO) and Asynchronous Connection-Less Links (ACL). SCO connections are
primarily used for audio connections, which need a full duplex connection with fixed-size
data packages that are transmitted synchronously. SCO links are limited to a maximum of
three full duplex voice links per Bluetooth device.

ACL connections are used for data transmissions with variable-length data packets that
are sent asynchronously. Fig. 5 shows the Bluetooth protocol stack.

The Bluetooth protocol stack contains the 7CS layer (Telephony Control Protocol Speci-
fication) for telephone-related services. The SDP layer (Service Discovery Protocol) enables
the discovery of services which are offered by other Bluetooth devices. The RFCOMM layer
offers standard serial communication emulation for higher-level protocols. A layer that is
able to access the functionality of the baseband layer directly is called Audio. This layer man-
ages the SCO connections for direct audio transmissions.

2 Definition of Terms 15

| Applications

TCS SDP

e

| RFCOMM |

‘ Logical Link Control and Adaptation ‘

‘ Host Controller Interface ‘

‘ Link Manager ‘

‘ Baseband / Link Controller }—

Radio |

Fig. 5 Bluetooth protocol stack

Bluetooth devices can operate in two modes: master and slave. The master sets the frequency
hopping sequence and the slaves are following this sequence. Every Bluetooth device has a
unique Bluetooth device address and a clock value. When a slave connects to a master it gets
the master’s address and clock value with which it is possible to calculate the frequency hop-
ping sequence. The number of slave devices that are managed by a master is limited to seven.
A network that consists of one master device with a maximum of seven slave devices is
called piconet. Inside a piconet all transmissions are managed by the master without any di-
rect connections between the slaves (see Fig. 6).

O master
@ slave

Fig. 6 Bluetooth piconet

When more than one piconets are connected the resulting network is called a scatternet. In a
scatternet one device is either a member of two piconets, or one device is acting both as a
master and as a slave, as it is shown in Fig. 7. Scatternets allow the ad-hoc connection of
more than seven Bluetooth devices.

2 Definition of Terms 16

ceseseacd

a.) Scatternet with one
Slave in both Piconets b.) Scatternet with one
master/slave device

O master
@ slave
@ master/slave device

© Piconet
Fig. 7 Two different kinds of scatternets

253 IrDA

In 1993 the Infrared Data Association (IrDA) was founded to establish a common standard
for infrared data communication. In 1994 the IrDA 1.0 standard was published which al-
lowed a maximum data communication rate of 115 kBit/s. Because of this low data rate, the
IrDA group announced IrDA 1.1 (Fast Infrared) in 1995 and VFIR (Very Fast Infrared) in
1999. IrDA 1.1 offers a data rate of 4 MBit/s and VFIR even of 16 MBit.

Infrared (IR) communication is a popular and cheap way to transmit data without cables
and wires. However, there is quite a difference between IR communication and radio-based
communication. IR communication is based on infrared light, which needs a direct line of
sight between the sender and the receiver. Due to the fact that the daylight contains parts of
the infrared spectrum IR communication can be interrupted or blocked. While radio-based
transmissions can permeate objects like walls, doors or clothes, IR transmissions are entirely
blocked by such objects. The IR communication range is limited to a few meters whereas the
radio-based communication ranges, generally, are higher (e.g. radio based WLAN with
100mW transmission power is limited to 100 meters).

The limited communication range and the need for a direct line of sight between sender
and receiver offers more privacy than radio-based networks. IR-based communication that
is performed within a few meters is hard to intercept from outside.

All modern operating systems support the IrDA standard and many mobile devices offer
infrared ports. The IrDA standard is based on two substandards:

* IrDA Data: This substandard is responsible for data transmissions over infrared
connections.

» IrDA Control: This substandard defines how input devices like keyboards, mice or
joysticks can send control information over an infrared connection.

Fig. 8 shows the IrDA protocol stack. At the bottom of the stack there is the infrared bit trans-
port layer, which manages the encoding of data bits in infrared signals. The /rLAP layer (In-
frared Link Access Protocol) is responsible for a reliable connection between sender and
receiver. While the IrLAP layer supports only a single reliable channel, the /rLMP layer (In-
frared Link Management Protocol) can manage multiple logical channels on a single physi-

2 Definition of Terms 17

cal connection. The /A4S layer (Information Access Service) allows the discovery of services
that are offered by other devices.

\ Application Layer \

IrLan IrOBEX
IAS IrCOMM

Tiny TP

IrLMP

IrLAP

infrared bit transport layer

Fig. 8 IrDA protocol stack

The other protocol layers are optional and not necessarily implemented within every IrDA
device. The Tiny TP layer (Tiny Transport Protocol) provides the possibility to transmit big-
ger messages through segmentation. /rLAN layer (Infrared Local Area Network) offers a
bridge for connecting to a LAN. IrOBEX (Infrared Object Exchange Protocol) enables the
exchange of complex messages such as v-cards, which is a protocol for the exchange of busi-
ness cards. [rCOMM emulates a standard serial communication, which enables applications
to communicate through a serial port.

2.6 Wireless Object Identification

One of the most important aspects of context-aware computing is the ability to identify ob-
jects. The identification of unknown objects, no matter if they are digital or non-digital, allow
devices to discover their environment and to reason about the actual context. A multitude of
identification technologies are already common in our daily life: barcode scanners in super-
markets identify products and their prices, chip cards or ID cards identify their owners, or
RFID transponders identify customers in skiing areas or wellness temples.

For digital systems it is hard to identify unknown objects. To simplify the identification
process, various identification technologies have been developed. Each technology has its
advantages and disadvantages. Since the identification of objects is an essential aspect of
context-aware computing, this chapter gives a detailed overview about some of the most pop-
ular identification methods.

2.6.1 Radio Frequency Identification (RFID)

For the work in this thesis, the Radio Frequency Identification (RFID) technology was one
of the most important identification mechanisms. The massive use of RFID technology in our
project is explained by the advantages that RFID offers over alternative wireless identifica-
tion systems.

One of the most important advantages is that RFID identification tags, also called trans-
ponders, are passive devices. RFID transponders are designed to receive energy from an ac-
tive reader device without any physical contact and to communicate with the reader in

2 Definition of Terms 18

wireless mode. The transponder does not need to have its own energy supply. It is possible
to tag nearly every object with an RFID tag without worrying about energy supplies. RFID
tags can be produced in tiny sizes because they are only composed of an integrated chip and
an antenna. They can be quite expensive, hoewever, depending on their form and the kind of
system in which they are used. Optical tags are much cheaper but RFID transponders allow
the identification of objects that are behind solid obstacles; it is not necessary to have a direct
line of sight.

RFID systems also provide information about the proximity of a RFID-tagged object rel-
ative to the position of the reader [Fer(02].

In recent years many different RFID systems appeared, which differ according to their op-
erating range, their frequency, and the kind of communication the transponders support.
Generally, it is possible to distinguish between three basic classes of RFID systems [Fi00].
Some of them are already defined in standards of the ISO (International Organisation of
Standardization) and IEC (International Electrotechnical Commission) and some standards
are still in progress:

* close coupling: An RFID system is called closely coupled (ISO/IEC Standard
10536) when its communication range is below 1 cm. This means that the trans-
ponder has to be placed directly on top of a reading device. Due to the small read-
ing distance the inductive energy transfer is better than in remotely coupled
systems and the RFID chip is able to transfer complex data to the reader. It is even
possible for the RFID chip on the transponder to encrypt the transfered data and to
allow write operations on RAM, EEPROM or FERAM memory.

* remote coupling: Remotely-coupled RFID systems provide a reading and writing
range of up to 1 meter. Around 90% of all RFID systems that are used in industrial,
medical, and commercial systems are remotely coupled. Remotely-coupled sys-
tems are classified into proximity coupling (ISO/IEC 14443) and vicinity coupling
(ISO/IEC 15693). Proximity-coupled systems are used for high-speed data transfer
over a small distance. Remotely-coupled systems use frequencies less than 135

kHz. There exist also remotely-coupled solutions which use the following frequen-
cies: 6,75 MHz, 13,56 MHz or 27,125 MHz.

» long range: Long-range RFID systems use active transponder devices to achieve
sending ranges between 1 and 10 meters. Because inductive energy transmission is
not possible over such large distances, active transponders include an energy sup-
ply. Long-range RFID systems operate in the microwave frequency band around
2,4 GHz as it is shown in Fig. 9.

2 Definition of Terms 19

(Hz)
2.45Ghz
1GHz
100MHz
13.56kHz ISO/IEC 14443
10MHz
4.915kHz ISO/IEC 10536

1MHZz

ookHz L seaokwz

1cm 10cm im
Close-Coupling ‘
ISO 10536 Proximity Type
ISO 14443 Vicinity Type

ISO 15693

Fig. 9 Frequency and range of actual RFID systems

To distinguish between different RFID systems, it is necessary to know which functionality
those systems offer. The functional range of RFID devices starts with /ow-end systems,
which provide read-only transponders, and goes to high-end systems, which can even have
an operating system running on the transponders. RFID systems can be categorized into the
following functional classes:

* read-only: Read-only RFID systems permanently transmit a small amount of data
(e.g. the transponder ID) when an electromagnetic field of an active reader is close
enough. It is not possible to read more than one transponder ID at a time, so colli-
sion detection is not supported. It is not possible for the reader to write data to the
transponder. Low-end read-only RFID systems are often used to replace optical
barcode systems.

* anti-collision: Anti-collision detection enables the identification of more than one
RFID transponders within the reading range. It can be implemented with a Time
Division Multiple Access (TDMA) ALOHA protocol. Anti-collision detection
RFID systems are getting more and more important due to the increased usage of

modern appliances in commercial environments (e.g. product tags in supermar-
kets).

* read-write: Read-write RFID systems offer the possibility to store small amounts
of data on the passive transponder devices (between 16 Bytes and 16 kBytes on
EEPROM or SRAM).

* authentication and cryptography: RFID transponders which are based on a micro-
controller chip can offer authentication and cryptography mechanisms. Such trans-

2 Definition of Terms 20

ponders are not based on a static state machine but can even host an operating
system that provides complex functionality. Such high-end RFID systems are sim-
ilar to microprocessor chip cards.

Basic architecture of inductive coupled RFID systems. As already mentioned above,
most RFID systems are using inductive coupling to access the passive RFID transponders.
Inductively-coupled passive RFID transponders consist of an integrated chip and a coil that
represents the antenna of the passive transponder. To read data from an inductively-coupled
RFID transponder the active reading device generates a electromagnetic field that penetrates
the transponder’s coil and creates a voltage at the passive transponder. Fig. 10 shows the
transmission of energy in inductively-coupled RFID systems.

V) ¢ @ @ ~~c1-_c2 | chip

R passive transponder

\/

active reading device

Fig. 10 Energy transmission in inductively-coupled RFID systems

Form factors of RFID transponders . Today there exists a wide range of form factors for
building RFID transponders. Depending on the application area where the RFID transpond-
ers are used to identify objects or people, the range of form factors varies from the smart la-
bel to the disk transponder form [Tex]. Fig. 11 shows some popular inductively-coupled
RFID transponder forms. Smart labels are already very popular for logistic systems and
warehousing applications, where it is important to track single objects through their whole
production cycle.

RFID transponders in credit card sizes are often used for personal identification as it is
shown in Fig. 11, where a student card with an RFID transponder is displayed. This sort of
transponders are often used for contactless access controls.

Glass transponders are extremely small and can be combined with biological material.
Therefore they are used for animal identification and tracking. Often the glass transponders
are delivered in combination with injection devices to place the transponder under the skin
of an animal.

The recent years showed that RFID technology is one of the most promising wireless
identification technologies.

2 Definition of Terms 21

32mm Glass Transponders,

/ 134.2kHz

23mm Glass Transponders,

(C—
/ 134.2kHz
C—

30mm Disk Transponder,
134.2kHz
v

ESTO

SmarlLabel
Die becrukbaren Etk
it Daters

M

85mm Disk Transponder,
134.2kHz

RFID Student ID Card

Smart Label

— ™ . L.
]| J0HANNES KEPLER=== =

UNIVERSITAT LINZ
N
Martina
" Musterfrau-

' Muster Sy b

Transponder
on a car key

n

& (XXXXX)

Fig. 11 Popular form factors of inductively-coupled RFID transponders

2.6.2 Ultrasonic Identification

The identification of objects which are equipped with active ultrasonic senders is used in
many research [Sen] and industrial projects. The active ultrasonic sending device, often
called bat, emits a short pulse of ultrasound that is received by statically installed ultrasound
receivers. The receivers are able to identify an object by specific ultrasound pulse times and
lengths. One of the most important aspects of ultrasonic identification of objects is that the
receivers are able to calculate an object’s fine-grained position by trilateration. This means,
that the system is able to calculate the three-dimensional position of an object by using the
time the signal needs to travel from the active bat to the receivers that are in range.

ORL system (Olivetti and Oracle Research Laboratory). The ORL identification system
[ORL] is based on active ultrasonic sending devices, which are equipped with a 418 MHz
radio transceiver for network communication. Each device has a 16-bit unique ID. To enable
an environment to identify the positions of the bats, it is necessary to mount a matrix of re-
ceivers, which are connected to a controlling PC. The PC periodically broadcasts one of the
unique IDs in the 418 MHz band. All the bats receive the message but only the one that has
this ID is allowed to respond with an ultrasonic pulse. So the PC is able to identify the spe-
cific device and to determine its position in the environment by measuring the signal travel
times. It is even possible to obtain information about the object’s orientation.

An ORL system that mounts 16 ultrasonic receivers on the ceiling is able to cover an en-
vironment of about 75m?> and offers a location accuracy of about 14 cm around the real po-
sition of a device.

Fig. 12 shows a prototype of an active ultrasonic device.

2 Definition of Terms 22

Fig. 12 Active ultrasonic identification device, called bat

The ultrasonic location identification mechanism is one of the most useful and cheapest pos-
sibilities for locating the position of objects within buildings. Radio positioning systems are
successful mechanisms for outdoor location tracking. Within buildings, however, radio-
based location tracking is vulnerable to signal reflections and therefore not useful.

2.6.3 Infrared Identification

Infrared object and location identification is a widely-used technology. It uses cheap hard-
ware and most of the modern mobile devices are already equipped with infrared interfaces.
Another advantage of this technology is that it can be used for both communication and ob-
ject identification. Whereas ultrasound is just an object identification and not a communica-
tion technology, infrared interfaces can be used for both purposes. However, infrared light is
blocked by solid obstacles and interfered by glaring sunlight. That means that the location
granularity depends on the environment (e.g. rooms) so that infrared communication and
identification is usually an indoor technology.

The first ubiquitous computing projects that used infrared object and location identifica-
tion were Xerox PARC’s PARCTAB environment (described in Chapter 3.1) and Olivetti’s
Active Badge system [ABal].

The Active Badge environment was one of the pioneer projects that established active in-
frared identification badges. People in the Olivetti Laboratory are using infrared-emitting
Badges for identifying themselves and for determining their location. In order to save energy
the badges send a unique ID only every 15 seconds. Sometimes they offer also limited user
input facilities through a set of buttons. The main advantage of Active Badges compared to
other identification technologies is that the devices are cheap and simple to build. The energy
consumption of Active Badges is much lower than that of ultrasonic bats. An active badge
can operate for more than a year. Fig. 13 shows an Active Badge as it is used in the Olivetti
Laboratory.

2 Definition of Terms 23

| Diego Ipina

E o AAERSITY (4 € AMIETDGE
FEIRNG PAFARTNIN

_@iﬂ;;
G

S D
= -

Fig. 13 Olivetti Laboratory’s Active Badge

2.6.4 Vision-Based Systems

Vision-based systems use visual input from digital cameras to identify objects and locations
in an environment. In order to identify specific visual characteristics it is necessary to have
a profound knowledge about the visual representation of an environment. In general, there
are two methods for vision-based object identification [Ipi]:

» Untagged vision-based systems try to recognize an object according to its visual
representation. In a simple environment these systems work fine, but as the com-
plexity of objects and their environment increases the identification process gets
extremely complex. Untagged vision-based systems require much CPU processing
power and for complex object identification, such as human face recognition, these
systems often fail completely.

» Tagged vision-based systems simplify the identification of an object by attaching a
unique visual tag to an object. Successors of this technology are barcode systems,
which are used in every supermarket. Visual tags are one of the cheapest identifica-
tion mechanisms, because the tags can be printed with a standard printer. Due to
their low costs visual tags are the most popular identification technology until now.

The main disadvantage of visual tags is that the scanner has to directly face the tag in order
to identify it. Any obstacle that comes between the scanner and the tag prevents the identifi-
cation process. The use of the cheap visual tags such as barcodes has in many ways revolu-
tionized contactless identification in large-scaled logistic systems.

TRIP. The TRIP (Target Recognition using Image Processing) system was developed by the
Laboratory for Communications Engineering at the University of Cambridge. It uses circular
two-dimensional barcode tags, also called ringcodes, to identify objects by image process-
ing. The TRIP system uses simple CCD or CCTV cameras to identify the ringcode tags with-
in the camera’s field of view.

2 Definition of Terms 24

bull's eye radius

sections | | | |
even-parity sectors

SYNG, sector :l -
’ E

~> L

ternary identifier

Fig. 14 A TRIPtag with its different encoding sections

A TRIPtag consists of two concentric black-colored rings in the middle, which are also called
the bull’s eye. A typical TRIPtag is shown on the left side of Fig. 14. Around the bull’s eye
two concentric rings, which are divided into 16 sections, are used to encode the TRIPtag’s
information. The first section of these rings is always colored black in order to provide a syn-
chronisation sector. The TRIP system uses a ternary encoding, which is shown on the right
side of Fig. 14. The synchronization section is the only place where all the ring sectors are
black. The next two sections specify an even-parity check and the following four sections
specify the radius of the bull’s eye. The remaining 9 sections are used to encode the unique
ID of the tag. TRIPtags can represent IDs between 1 and 19.683 (39 - 1).

The reason why concentric rings were chosen for identifying objects and their locations
is that round shapes are not as common in man-made environments as square and rectangular
shapes. Furthermore, the identification of round shapes is easier and less CPU-intensive than
the identification of rectangular shapes.

To extract the 3D position of a tagged object and its orientation it is necessary to use the
known size of the tag and to calculate its perspective projection. The size of TRIPtags is en-
coded within the sectors 3-7, so it is possible to use variable-sized tags.

Visual marker systems, such as the TRIP system, are flexible and inexpensive according
to the fact that every web cam can be used to identify tagged objects.

2.7 Ad-Hoc Networks

Mobile devices, in combination with wireless networks, require network protocols that allow
the dynamic creation of network topologies. Ad-hoc networks can be established between a
group of devices that are able to communicate with each other with an automatically created
routing table. Ad-hoc networks operate without a connection to a central server that has to
be available globally. They do not rely on any infrastructure or already established central
administration [Toh].

Networks, such as ad-hoc networks, that do not rely on any infrastructure are called infra-
structureless. Infrastructureless networks offer great advantages, but also have some disad-
vantages compared to static networks with fixed topologies and a central administration. Ad-
hoc networks can be used in any situation between any group of nodes in order to access serv-
ices, exchange data, or forward requests to other nodes. In environments where no network

2 Definition of Terms 25

infrastructure is available (e.g. outdoors), or in environments where a static network topolo-
gy is not useful (e.g. PANs between MP3 player, mobile phone and headset), ad-hoc net-
works provide a convenient communication solution.

The main disadvantages of ad-hoc networks are their lack of a central security adminis-
tration and the additional network administration overhead for the individual nodes.

Every node in a infrastructureless network has to perform some additional tasks to estab-
lish network communication to other nodes. A node has to serve as a router, in order to for-
ward packages to the next hop on the route to the package’s destination node. Due to the fact
that ad-hoc networks are highly dynamic (e.g. it is normal that nodes can disappear without
notification) the routing information often changes. In static networks, where millions of de-
vices are connected by a central administration, the network address of a device is often
mapped directly to its location in the network topology. Therefore it is easier to calculate the
network route in static networks.

In ad-hoc networks the network address is completely independent of the device’s loca-
tion in the network. Most of the time ad-hoc network nodes are mobile devices which change
their location. Due to this fact, the network topology changes dynamically and the calcula-
tion of a route is much more complex. Routing algorithms can be classified into adaptive and
non-adaptive routing mechanisms, where adaptive mechanisms are able to react automatical-
ly on changes in the network topology. For ad-hoc networks only adaptive routing mecha-
nisms can be used due to the highly dynamic nature of such network topologies. Adaptive
routing mechanisms can be categorized into the following groups:

» Table-driven routing mechanisms (proactive algorithms) use routing tables to find
a route to a destination. Such mechanisms update their tables periodically and also
gather routing information about hosts that were not demanded before. Examples
for table-driven routing mechanisms are WRP [WRP] and DSDV [DSDV].

* On-demand mechanisms collect routing information to a destination address
when a node has to forward a package to this address, but they do not store this

information for later use as table driven mechanisms do. Examples for such mech-
anisms are DSV [DSV] and ABR (Associative-Based Routing) [ABR].

* Hybrid routing mechanisms combine aspects of table-driven routing protocols
(caching already known routes) and on-demand routing protocols (collecting rout-
ing information only when required). The Zone Routing Protocol [ZRP] is one
example for a hybrid mechanism.

An important characteristic of routing protocols in mobile computing environments is the
amount of energy that is necessary to transmit a package on a calculated route. Changing the
power adjustment of a mobile device (e.g. into power saving mode) can therefore change the
network topology and the routes.

Ad-hoc networks, most of the time, consist of a multitude of heterogenous devices with
different hardware capabilities. A device which has a permanent power supply, a powerful
CPU and a high amount of memory is a better alternative than a mobile device with very lim-
ited resources.

Bandwidth constraints are also a critical aspect of ad-hoc routing protocols, because wire-
less networks often offer significantly lower bandwidth than wired networks. Wireless con-

2 Definition of Terms 26

nections are also likely to change their bandwidth according to signal strength or latency
measurements.

For connecting ad-hoc networks to traditional infrastructure networks, such as the global
Internet, it is necessary to specify how ad-hoc connections can be routed into a static wired
network. The resulting mobile Internet can be divided into two layers: the mobile host and
mobile router layer [CO99], as it is shown in Fig. 15. The mobile host layer consists of sev-
eral mobile hosts that are temporarily connected to fixed routers, which are directly connect-
ed to a wired network. The mobile host layer is supported by the standards MobilelP
[RFC2290] and DHCP [RFC2131]. In this layer the communication between mobile hosts

is only possible though the infrastructure.

mobile routers

mobile hosts

mobile router

layer
/ mobile hosts
mobile host
layer
@ ® O O
® 9 e {9/
static wired ': l‘ :l".n' .
: # fixed router
network)
<Q O P
@
® @
) . . wireless infrastructure wireless ad hoc
legend: —— wired connection === LT :
connection connection

Fig. 15 Mobile host and mobile router layers of a mobile ad-hoc network, connected with a wired
network

The mobile router layer consists of mobile hosts and mobile routers. Each mobile host in the
mobile router layer is associated with a mobile router through a wireless ad-hoc connection.
A mobile router routes between other mobile hosts or into a traditional static network through
a wireless infrastructure coonection. The mobile network layer does not need any infrastruc-
tural support from the traditional static network. The mobile router layer (the ad-hoc net-
work) forms a parallel network to the static network.

In recent years, research on ad-hoc networks has focused on military scenarios where
many heterogeneous devices have to communicate in unknown environments without any

2 Definition of Terms 27

infrastructure. With the emergence of Peer-To-Peer file- and resource-sharing frameworks,
as well as with personal area networks, ad-hoc networks gain more and more importance.

2.8 Peer-To-Peer Computing

P2P describes systems and applications that share resources, such as files or services, without
the use of any central authority, like a server. P2P systems are comparable with ad-hoc net-
works where every node is able to communicate and to forward service requests without any
central infrastructure. While ad-hoc networks provide basic networking protocols to enable
communication between devices without a central router, P2P computing provides higher
level services on top of any networking protocols. The difference between ad-hoc network
protocols and P2P systems is that ad-hoc network protocols are located in the network layer
and tranport layer of the ISO/OSI seven layer architecture [OSI] and P2P systems are oper-
ating in the presentation and application layer.

The term Peer-To-Peer Computing (P2P) refers to a research area which gained a lot of
popularity in the last years. P2P computing is a controversial topic, according to the fact that
many of the technologies and mechanisms used by P2P frameworks are already known from
other research areas (e.g. grid computing, parallel computing, network communication).

P2P systems often rely on an arbitrary network structure (ad-hoc or managed, wireless or
wired) and realize a higher level decentralized organisation of resources. In fact P2P appli-
cations are typical designed to run on ad-hoc networks, even if most of the actual P2P appli-
cations are running on traditional networks. One of the most popular showcases for a P2P
application is SETI@home (Search for Extraterrestrial Intelligence), which distributes small
amounts of signal recognition calculations among millions of private PCs. The SETI@home
scenario shows that the P2P technology can offer great advantages compared to traditional
mechanisms. Some companies have already started to establish software frameworks to sup-
port the development of P2P applications, such as Sun’s Java based JXTA4 framework [JX-
TA], or MIT’s IRIS framework [IRIS]. There is even a framework which is able to test P2P
protocol implementations, called p2psim [P2PSIM]. Other well-known examples are file
sharing P2P applications like Napster [NAP] and Gnutella [GNUT], which came to ques-
tionable fame in the last years, by sharing copyrighted resources.

A typical P2P node, which is also called peer, is designed according to a hybrid client-
server model. This means that a peer may act as a server for some peers as well as a client
for others. The high autonomy of peers leads to the same problems as in mobile hosts sce-
narios. One negative aspect is the lack of trustworthyness, because there is no possibility to
contact a trusted central server. Other negative aspects are the high redundancy of informa-
tion that may travel through a P2P network as well as the limited scalability of such networks
because they require higher management effort.

The design of P2P applications is an alternative to the classic client-server model, but
many P2P frameworks use a hybrid approach with some central peers in order to reduce the
security and redundancy problems. Fig. 16 shows the taxonomy of computing systems, in-
cluding P2P, taken from [P2PHP]. As the right taxonomy in Fig. 16 shows, P2P systems can
be used in four different contexts: distributed computing, file or resource sharing, collabo-

2 Definition of Terms 28

ration, and platform infrastructure. SETI@home represents a typical instance of distributed
computing. Napster, Gnutella and Kazaa are classified as file or resource sharing systems.
The messenger tool Jabber is a collaboration system, JX7A4 and /RIS form P2P platform in-
frastructures.

The SiLiCon framework, that is presented in this thesis, is a combination of all four of
these aspects.

computing systems peer-to-peer systems
centralized systems distributed file

distributed systems

A

client-server peer-to-peer

N T

flat hierarchical pure hybrid

collaboration platform

(workstations, mainframe) computing sharing

Fig. 16 Taxonomy of computing systems and P2P systems

2.8.1 P2P Discovery Algorithms

One of the most important parts of a P2P system is the discovery of other peers and the
lookup of services. P2P architectures try to work as decentralized as possible. Therefore, it
is necessary to provide a powerful discovery mechanism for finding other peers. There are
several such algorithms ranging from completely decentralized to centralized discovery.

Centralized discovery. Centralized discovery algorithms use a central repository to store
the contact information of all other peers. When a peer tries to find another peer it just has to
get its contact information from the repository in order to be able to communicate with it.
This mechanism offers at least a small amount of security and privacy compared to broadcast
discovery mechanisms, because the centralized discovery mechanism depends on a central
trusted repository. Also a big scalability factor is assured through the use of this central peer.
The problem of this approach is that the central peer is a bottleneck. Furthermore, there has
to be a connection between every peer and the central repository. A centralized discovery
mechanism is completely useless within an ad-hoc infrastructure.

Broadcast or flooding discovery. Broadcast discovery mechanisms are pure P2P solutions,
where the peers have no shared information. They are based on completely decentralized al-
gorithms where all peers have to announce their appearance by a broadcast or multicast mes-
sage. When two peers meet they exchange their contact information as well as the
information that they have collected from other peers before. Broadcast mechanisms provide
a good solution for peer discovery in local environments. In large-scale environments with a
high number of peers, however, they produce too much network traffic and are not scalable.
Due to scalability problems broadcast discovery algorithms often limit the number of hops a
discovery package is able to travel. Therefore search requests may return without a result,
even if the desired peer is running and able to communicate. Broadcast discovery mecha-
nisms have a non-deterministic behavior and a search request without a limited number of
hops might take an indefinite amount of time.

2 Definition of Terms 29

Hybrid discovery solutions. Modern P2P frameworks use hybrid discovery mechanisms in
order to reduce the scalability problems in large-scale environments. One possible solution
is the definition of superpeers which are peers with a higher reliability and more CPU power
than an average node. A superpeer collects information about a dedicated group of standard
peers in order to speed up the discovery process. Every discovery request is first sent to the
nearest known superpeer. The file sharing application KaZaa uses such a hybrid mechanism
based on superpeers.

It is expected that P2P applications and platforms will appear also in areas other than file
sharing. Decentralized systems offer the possibility to operate in centralized networks (such
as the Internet) as well as in ad-hoc networks. There are even some sorts of P2P systems that
are designed to run on mobile devices such as smart cell phones or PDAs, which offer some
higher-level operating system (e.g. Symbian OS, WindowsCE or Linux).

2.9 Jini

Jini (Java Intelligent Network Infrastructure) [Jini] was introduced by Sun Microsystems to
provide a reliable software infrastructure for ad-hoc connectivity between heterogeneous
digital devices. It was presented to the public in 1999 and is based on the well-established
Java environment. Jini should widen the spectrum of Java-enabled devices to mobile and em-
bedded systems. It should be usable, for example, to spontaneously connect even smart
household appliances such as refrigerators, microwaves or dishwashers.

Traditional Java applications are running on top of a virtual machine, called the Java Vir-
tual Machine (JVM). Jini is designed to build a spontaneous grid of JVMs in order to distrib-
ute services between heterogeneous devices. Service platforms like Jini facilitate the rapid
creation and deployment of services, as well as the provision of dynamic service discovery
mechanisms. The Jini service communication is based on RMI (Remote Method Invocation),
and requires clients to be implemented in Java. RMI is an extension of the traditional Remote
Procedure Call (RPC) mechanism, which allows a completely transparent call of methods
over a network. In Java source code an RMI call cannot be distinguished from a local method
call. The use of underlying Java technologies offers great advantages for developers who can
rely on already established Java technologies and libraries. Java Object Serialization enables
the transport of complex RMI parameters over the network and even to move entire objects
including their code. To access low-level device capabilities it is often necessary to imple-
ment a bridge between Java and C++ using JNI (Java Native Interface).

Fig. 17 shows the layered architecture of a Jini service provider and a Jini client applica-
tion.

2 Definition of Terms 30

Jini client application Jini service provider

application <t service calls—p~| Jini service

Jini < Jini protocol— | Jini

Java/RMI ¢—RMl calls —p> Java/RMI

oS Network |-#—— TCP/.UDP —»| Network | JNI (C++)
IP Multicasts

oS

Fig. 17 Jini protocol stack

At the lowest level of the Jini protocol stack the network layer is responsible for the transport
of byte arrays. The Java network package allows Jini to use TCP/IP sockets, which provide
a reliable connection between two network endpoints, as well as UDP (User Datagram Pro-
tocol), which is an unreliable package-oriented network protocol. IP Multicast is used to
send packages to IP multicast groups in order to discover a Jini lookup service provider.

2.9.1 Jini discovery and lookup

The kernel of the Jini service platform is based on three protocols: discovery, join and
lookup. When a Jini device appears, it tries to find the next lookup services provider in the
current environment; this is called discovery. Once a lookup service provider is found, the
device registers its own services there; this is called join. A service provider which joins a
lookup service provider has to register a service object. A service object represents a proxy
object which is able to call the service at the service providers host. It is up to the service
object how the service is called at the remote host but most of the time RMI (Remote Method
Invocation) is used. The service object is registered at the service provider through the Java
serializing mechanism which allows the transmission of Java objects. The discovery process
is performed with the use of IP multicast packages, which means that the Jini device has to
know the IP multicast group address where a possible lookup service provider listens.

Services are described by Java interfaces. Therefore, a Jini client asks a lookup service
provider for a specific interface. If a service with this interface has been registered there the
client receives the service object from the lookup service provider which is able to call the
service.

Fig. 18 shows how two Jini devices, a digital camera and a photo printer, send IP multicast
discovery packages in order to find a lookup service provider. When a lookup service pro-
vider receives a discovery package from a device it responds with a multicast response pack-
age containing it’s address. The requesting device, the camera and the printer, get the
response package from the lookup service provider. The devices register their services at the
service provider. Jini services are specified through a Java interface definition. For registra-
tion the Jini service provider has to send sends the 128 Bit UUID (Universal Unique Identi-
fier), the service interface and a collection of attributes to the lookup service provider. The
attributes provide optional metainformation about the service.

2 Definition of Terms

31

responds on
IP Multicast
discovery

joins the

Provider

takePhoto();

Jini Lookup Service

Registered Jini Services:

takeVideoSeq(int len);
zoom(int factor);
printPhoto(Photo p);

lookup service

\@<

IP Multicast responds on
discovery o IP Multicast
joins the discovery

Offered Jini Services:
takePhoto();
takeVideoSeq(int len);
zoom(int factor);

Demanded Services:
printPhoto(Photo p);

o

lookup service

IP Multicast

d iscov%

®

Offered Jini Services:
printPhoto(Photo p);

Fig. 18 Jini discovery and join process

In a TCP/IP environment, all multicast IP packages are sent via UDP, which is a unreliable
package-oriented protocol. With the Java Serialization mechanism it is possible to encode
the request and response into a byte array, which can be transmitted in a UDP datagram pack-
age. Because a UDP datagram package is limited to 512 bytes the discovery requests are also
limited to this size. The Java serialization mechanism guarantees also platform independ-
ence. Fig. 19 shows how the digital camera does a lookup for a service with the specific Java
interface, which offers the method pri nt Phot o(Phot o p) . Jini devices use the Java type
system to determine whether an interface matchs a service lookup. Java interfaces that offer
the same signature but implement different types do not match. After the camera has received
the address and the service object of the service provider it is able to call the service with the
printers service object.

2 Definition of Terms 32

Jini Lookup Service
Provider

Registered Jini Services:
takePhoto();

takeVideoSeq(int len);
zoom(int factor);
printPhoto(Photo p);

lookup service
- printPhoto(Photo p)

Offered Jini Services: EA

takePhoto();

takeVifjti?Setq(ir?t len); call service Of_fered Jini Services:

zoom(int factor); printPhoto(Photo p) p-| printPhoto(Photo p);
with RMI

Demanded Services:
printPhoto(Photo p);

Fig. 19 Lookup process for a pri nt Phot o(Phot 0 p) service

2.9.2 Leases

In Jini environments, as in all distributed systems, a client has to know how long a service
runs and how reliable it is. These characteristics may differ from device to device. While a
printing service may be running for months without interruption a mobile device could pow-
er off unexpectedly.

Jini tries to handle this problem with leases. A lease is a period of time for which the serv-
ice provider guarantees that the holder of the lease is able to access a Jini service. Jini works
with lease duration rather than with absolute time because of synchronisation problems. A
client can request a lease for a certain period of time. It can renew an existing lease or cancel
it if the client is not longer interested in the service. If the lease times out without a renew
request the lease expires.

2.9.3 Jini Summary

Jini was one of the first service platforms that supported the spontaneous lookup and inter-
action of distributed services. It is based on the Java environment, which allows Jini devel-
opers to use many well-established technologies such as Java RMI, Java object Serialization,
JavaBeans, Enterprise JavaBeans, and JavaSpaces.

One of the major problems of Jini is that it is not possible to run it on the Java Micro Edi-
tion (J2ME), which is the Java Virtual Machine implementation for embedded systems. Jini
needs the full Runtime Environment, which means that a Jini device can not run on most em-
bedded and mobile devices.

Another drawback of Jini is that the service interface has to be specified as a Java interface
type which means that a Jini service has to be implemented in Java. Modern service plat-
forms use language- and platform-independent interface definition languages such as WSDL
(Web Services Description Language).

3 State of the Art 33

3 State of the Art

In order to show the progress in creating context-sensitive applications and designing mid-
dleware solutions that are able to deliver context information it is necessary to describe some
existing research projects. Context-awareness and the supporting middleware is an important
aspect for many research groups in the area of pervasive computing. This section describes
a selection of research projects, which heavily influenced our work. Some projects, such as
PARCTAB from Xerox PARC or the Context Toolkit from the Georgia Institute of Technol-
ogy exist for quite a while now. They have pioneered the research in this area and have
coined the term context-awareness. Around 2002 many companies realized that with the in-
creasing number of mobile and embedded devices the need for a lightweight interconnecting
middleware grew. Therefore we will also discuss a few projects from companies such as
AT&T and Hewlett Packard. The projects described in this section represent the current state
of the art in context-aware computing.

3.1 The PARCTAB Project

In 1994, a Xerox PARC group under Bill N. Schilit developed a test environment for ubiqui-
tous computing in an office environment, called PARCTAB [ParcTab]. This project was the
first that mentioned the idea of using context information to support distributed applications.
It also stimulated some interesting thoughts about the area of context information handling.

Schilit used the term “dynamic environment object”, which should not be confused with
objects in the object-oriented sense, but should be seen as a non-specified collection of data
that is self describing, because it includes metadata. The data in a dynamic environment ob-
ject is organized as Attributes that are key-value pairs holding pieces of information about
the object. Attributes can also contain collections of values.

The following example shows how the attributes of a printing device are encoded in
PARCTAB:

{ { Name Printer:snoball }

{ Location LID:35-2-1-06 }

{format {ip ps text}}
{ features { duplex staple highlight } } }

The term context-aware computing was defined as follows in PARCTAB:

“Context-aware computing is the ability of a mobile user’s applications to discover
and react to changes in the context in which they are situated.”

According to PARCTAB a context-aware system has to perform the following three basic
functions:

1. Discovery: Learning about entities in the environment and about their characteristics.

3 State of the Art 34

2. Selection: The ability to decide which resource can be used to achieve a certain task.
3. Use: The action of sending work requests to the selected resource.

3.1.1 PARCTAB system architecture

The architecture of PARCTAB is based on infrared tabs and corresponding tab agents
[PTab95] as it is shown in Fig. 20. An infrared tab is a small electronic device with longer
battery life time than for example PDAs. Infrared tabs provide operation times of more than
a month. An example for an infrared tab is shown in Fig. 13.

Ethernet

tab agent 1

IR
gateway

Conference Room

tab agent 2

IR
gateway
IR
gateway

IR IR PARCTAB context-aware
transeiver gateways agents applications

Bill's Office

tab agent 3

Roy’s Office

tabs
Fig. 20 PARCTAB system architecture overview

Every location in a PARCTAB environment (e.g. every office room) contains one or more
IR transceivers which collect IR beacons and deliver them to the corresponding IR gateways.
Beacons are small data packages that are broadcasted on a specific medium in order to an-
nounce the existance of a digital device inside an environment. IR beacons are sent through
the infrared medium. Radio based beacons are used by WLAN access points to announce
their existance to a mobile device. One or more IR transceivers can be bound to one gateway.
The gateway itself is connected to an Ethernet network and is therefore able to send the tab
information to the responsible tab agent. The tab agent can now provide context information
to context-aware applications. In order to get the location information about a person wearing
an IR tab, a containment hierarchy was defined. Fig. 21 shows an example of such a hierar-
chy, where a region is divided into several buildings, a buildings into several floors and a
floor into several rooms.

3 State of the Art 35

region @

mudd watson
buildings
L2 3| 4
floors T S T~
\ \

11 || 12 21| 22| 31| 32| 41 || 42

room

Fig. 21 PARCTAB containment hierarchy

Despite the fact, that the PARCTAB project came to years, it proposes a solid definition of
terms and problems in the area of context-awareness. Many modern context research projects
began with examining the PARCTAB architecture. For our work, the notion of context as a
collection of attributes within an entity was important. In the following chapters we show
how the PARCTAB architecture influenced our SiLiCon framework middleware and where
we tried to improve it.

3.2 The Context Toolkit

A group at the Georgia Institute of Technology headed by Anind K. Dey developed a soft-
ware development framework, called Context Toolkit, which integrates sensor and actuator
devices into a context-aware system [Dey01]. Their definition of context is:

"Context is any information that can be used to characterize the situation of an entity.
An entity is a person, place, or object that is considered relevant to the interaction be-
tween a user and an application, including the user and application themselves."

The definition of context-aware computing was given as follows:

"A system is context-aware if it uses context to provide relevant information and/or serv-
ices to the user, where relevancy depends on the user's task."

The Context Toolkit focuses on the development process of context-aware applications and
on the reuse of different software components. Once a sensor or actuator type has been inte-
grated into the Context Toolkit’s library, it is possible to reuse the component in different
applications. A context widget is a Java object that offers services that are bound to a specific
type of sensor or actuator. A context widget hides the complexity of accessing the specific
hardware of sensors and actuators. The context widget provides similar functionality as a
GUI widget. It is possible to access the context information in a context widget either by poll-
ing or by a notification mechanism. A context widget is able to store its actual state within a
database, in order to trace the widget’s state over a period of time. With a trace of widget
states over a period of time it is possible to claculate statistics about possible future states of
the widget. Possible future states of the widget could lead to automatic configuration or smart
system behavior. The Context Toolkit architecture consists of three building blocks:

3 State of the Art 36

1. Widgets: A context widget provides attributes and callbacks. Attributes are pieces of
context information, which can be accessed via polling or subscribing. The context
widget is able to notify interested objects via callbacks. Other objects can query the
widgets’ attributes and callbacks at runtime. Objects can use the widgets to discover their
environment.

2. Interpreters: The context interpreters are responsible for an interpretation of available
context information at runtime. The interpretation of context information means that
available information is used to trigger a state change of one or more context widgets.
For example if a location widget collects the information that more that three people are
inside the conference room and the beamer is powered on an interpreter could use this
information to interpret the situation as a meeting and to change the peoples state to ’in
meeting’. Context interpreters are separated from the application layer. Therefore it is
simple to reuse them in different applications.

3. Aggregators: Aggregators can be used to group several context widgets into a single
compound widget, which has the same functionality as a simple context widget. A com-
pound widget is also able to store its history and to provide attribute information and
notification.

Abstraction with context widgets. One benefit of context widgets is that they abstract from
raw context data and provide high-level context information that is interesting for applica-
tions. Furthermore, it is useful to be able to track the history of a context widget in order to
calculate statistics or to predict possible future states. These abstraction facilities are modular
and thus reusable. As it is shown in Fig. 22 context-sensitive applications can retrieve context
information from aggregators, from widgets, or from interpreters.

Application Application
Aggregator

Discoverer

Context Toolkit Middleware

Interpreter

Service

I
i1

Fig. 22 Context Toolkit sample application

The main focus of the Context Toolkit is to make it easier for application designers to create
context-sensitive applications. The PARCTAB project that was discussed in Chapter 3.1 pro-
vided a first approach for developing ubiquitous applications, because context-sensitive and
ubiquitous applications were not implemented before. The Context Toolkit focuses on rapid
application development (RAD) of context-sensitive applicationsand uses components for
reusing sensor abstractions and interpretation processes.

Another interesting point in Dey’s work is, that he distinguishes between user input and
context retrieval in general. The first difference is that user input is usually limited to a single
workspace while context information retrieval is a distributed process most of the time. The

3 State of the Art 37

second difference is that the retrieval of context information sometimes requires another ab-
straction layer. Raw context information often has to be transformed into a client-specific
format (for humans a location given by latitude and longitude may not be as useful as a point
on a map or the name of the street). Therefore context widgets hide the complexities of gath-
ering sensor information and can be reused on a higher level by different context-aware ap-
plications. Finally, the third difference is that context-retrieving middleware has to provide
the collected information to multiple client applications while user input usually goes to just
one specific application.

Context services. Context widgets offer public methods that can manipulate the state of the
environment. These methods are called context services. The Context Toolkit offers syn-
chronous service calls, as well as asynchronous service calls to invoke context services. An
example could be a context widget that measures the light level of a room and offers context
services to change the light level.

Interpreters. Context interpreters take specific context information and combine this infor-
mation to reason about the state of the environment. As an example, Dey provides a situation
where several people are sitting in a room and the noise level increases. In this situation an
interpreter could use the noise level information and the number of persons in the room to
guess that a meeting is going on. Interpreters can be loaded or unloaded at runtime which
offers more flexibility than a static system.

discovery. In contrast to the SiLiCon framework, the discovery mechanism used by the Con-
text Toolkit is based on a single central registry service. This solution was chosen because of
simplicity. Besides the fact that a central discovery service represents a bottleneck and a sin-
gle point of failure, it is not possible to use it in an ad-hoc communication environment. In
an ad-hoc communication environment every peer has to offer its services itself and should
be able to discover other services. In the Context Toolkit a plugeable discovery mechanism
is used, in order to enable the use of different discovery mechanisms or standards such as
SLP (Service Location Protocol) or the discovery mechanism used with Jini.

3.2.1 Context Toolkit Example Applications

In/Out Board. An In/Out Board is a device for tracking the presence of users in a research
lab. It displays the presence state on a board in front of the research lab. The user tracking, a
so-called presence widget, is based on a user-triggered docking mechanism and on a radio-
based indoor location system. The users wear pager-sized tags, that can be detected by an-
tennas inside the buildings in order to change the presence state of a user automatically. A
visualization of the presence state displays red dots for every person that is not inside the area
and green dots for users that are inside the area. An interesting fact is that the meaning of the
states in and out depends on the location of the requesting user. If the requesting user changes
the building his in/out state will change, because the user changed his location to outside the
first building and inside the second building. So the location state of the user changed to a
different building and his In/Out Board configuration changes. Fig. 23 shows a screenshot of
the In/Out Board.

3 State of the Art 38

=1 FCL InfOut Boaed

Gregory Abowd Out 10:500m Jen Mankoff .na 12:08pm
Jason Brotherion .In o%:28am David Ngeryen .m 11:09am
Anind Dey .m 12.0801m Rob Orr out 1:280mm
M. Futakawa ‘!u 1Z:00pm Maria Pimentel Out 5:54pm

Out 10c520m Daniel Salber 0&« i 1am

Rob Hooper Oul 5:261m Brad Singletary out Z509m

Kent Lyons Out 1227pm Khaf Truong Ot 1:25pm

Fig. 23 Screenshot of the In/Out Board based on the Context Toolkit

DUMMBO (Dynamic Ubiquitous Mobile Meeting Board). With the DUMMBO project
the Context Toolkit team showed how an existing computer-supported cooperative applica-
tion that did not use context information originally could be improved by using context in-
formation. DUMMBO supports the digitising and recording of meetings.

The original application provided an interactive whiteboard which is able to capture notes
of spontaneous meetings. The system is able to record the audio signal in a meeting room as
well as the notes that are painted on the whiteboard. After a meeting it is possible to store all
the captured information.

The original system started to record a meeting when a person changed the content of the
whiteboard. The augmented system is now able to start the recording process when the Con-
text Toolkit gathers information about a group of people who are located in front of the
whiteboard. The recorded meeting data (e.g. the recording date, time, meeting members, and
location) is automatically stored in a repository. A user is now able to search for meeting data
by specifying criteria such as the time, date, location and meeting members. Another inter-
esting feature of the augmented DUMMBO system is the possibility to view the timeline of
all changes that were made on the whiteboard. That is possible because the context widgets
of the Context Toolkit are able to archive their historic states. It is also possible to pick a spe-
cific time and to view the whiteboard state at this time. Synchronously, the user can hear the
recorded audio stream at this time. It is quite easy to replay a recorded meeting, or to find a
specific situation that happened in a meeting.

3.3 The Sentient Information Framework

The Sentient Information Framework was developed by AT&T’s Sentient Computing Group
[IpiO1]. Its goal is to enable software applications to sense their environments and to define
a model of their surrounding ambiance. If parts of the environment are mapped into a digital
world model, it should be possible to use the environment as an interface to sentient applica-
tions. Using the natural environment as an interface to interact with applications is directly
related to the research area of Tangible Interfaces [Ishii97] and context awareness. Sentient

3 State of the Art 39

computing is based on information retrieval with environmental sensors, as it is also de-
scribed in context-aware computing research.

The sentient computing research group developed different locating technologies, like the
TRIP (Target Recognition using Image Processing) system, which was described in Chapter
2.6.4. TRIP offers a cheap location-sensing mechanism based on visual ringcode markers.
The goal is to allow mobile devices to sense their environment and to discover entities
around them.

CORBA based software middleware. The Sentient Information Framework (SIF) archi-
tecture is based on CORBA and on object mobility in CORBA. SIF defines an application
construction model for sentient application implementations. It separates the context capture
and abstraction layers from the sentient application semantics. Like other context informa-
tion middleware frameworks (e.g. Context Toolkit and the SiLiCon framework) SIF is sen-
sor-independent. The visual location sensor technology TRIP is one instance of a sensor that
is encapsulated in a context generator.

The SIF components are categorized into three types:

» Context Generators: A Context Generator (CG) encapsulates sensors (such as the
TRIP location sensor) that generate context information. Context-aware applica-
tions are also encapsulated as context generators, because often the output of one
application is used as input by other applications. Context generators are sources of
sensorial events that are fed into the SIF middleware.

* Context Channels: Context Channels (CC) are implemented as CORBA Notifica-

tion Channels, which receive and filter events for different consumers. The con-
sumer is able to specify filters in order to receive a subset of all events.

» Context Abstractors: Context Abstractors (CA) consume context data, interpret it
and provide new combined context information from the input data. A context
abstractor is also able to use the output of another CA in combination with other
information to generate a required data format that a specific application is able to
process. Context Abstractors are comparable to the Context Toolkit’s interpreters
and to the SiLiCon context rules.

Fig. 24 shows that an example modelled in the SIF architecture looks similar to the Context
Toolkit’s architecture, except that SIF combines the idea of interpreters with aggregators.
According to our experiences in the SiLiCon work, this combination seems to be useful, be-
cause most of the functionality of interpreters and aggregators overlaps.

3 State of the Art 40

Context
Generator 3

Context
Generator 2

Context
Generator 1

push events CG1 push events CG2 push events CG3

Context Channel A Context Channel B

push filtered events push filtered events

Context
Abstractor 2

Context
Abstractor 1

push enhanced
events CA1

push enhanced
events CA2

Context Channel C

push filtered events
pull filtered events

Application 1 Application 2

Fig. 24 Sentient applications modelled within the SIF architecture

LocALE. Sentient computing applications are based on a distributed and mobile environ-
ment where users move between different environments. When a new sentient application is
developed, all dependent components have to be restarted locally. To avoid the local restart
of application-dependent components it is necessary to design an environment in which the
life cycle of components can be managed automatically over the network.

The LocALE (Location-Aware Life cycle Environment) is designed to manage the life cy-
cle of CORBA objects that are distributed across a network. Additionally, LocALE provides
load-balancing and fault-tolerance features for all CORBA objects whose life cycle it man-
ages. The architecture of the LocALE middleware is shown in Fig. 25.

The LocALE architecture consists of the following components:

» Life cycle manager: The life cycle manager offers operations for controlling the
life cycle of LocALE-managed CORBA objects. It caches the locations of all
CORBA objects in order to provide references to them. Those references are used
by clients that request a connection to a LocALE-managed CORBA object.

» Life cycle server: Life cycle servers represent containers for LocALE-managed
CORBA objects. They follow the operational instructions that are delivered by a

Life cycle manager. Life cycle servers also help their hosted objects with the
migration process to other containers.

» Type proxy factories: A type proxy factory is responsible for the creation of
strongly typed objects. A client can therefore use the life cycle manager to call a

3 State of the Art 41

strongly typed constructor instead of a generic constructor. When a client uses the
strongly-typed creation mechanism of type proxy factories, it will get a compile-
time error instead of a runtime error if an argument type does not match. A client
could also use the generic object creation interface where any constructor argu-
ments are taken and evaluated at runtime. If an argument mismatch is ecountered
at runtime the client gets a runtime exception. For clients it is generally better to
use the strongly-typed object creation interface to simplify the creation code and to
provide type checks at compile time.
/

\ /

strongly-typed ° generic
creation requests creation requests

Type A
Proxy Factory Lifecycle Server
Type A

Host 1

Type B

Proxy Factory

lifecycle Lifecycle Server
Type A
LocALE delegation Host 2

operations
Client 1 ‘

Lifecycle

) migration, removal and
Manager

0 redirection requests

LocALE
Client N

Lifecycle Server
Type B
Host 2

Fig. 25 Three tier architecture of the LocALE middleware

3.4 The Cooltown Project

The Cooltown project from Hewlett Packard is one of the most popular research and demon-
stration projects in the area of pervasive and mobile computing. Its context-aware environ-
ments are heavily based on embedded web servers and a massive use of the HTTP protocol,
in order to provide simple access to resources anywhere. The goal is to create a web presence
for real-world objects classified as people, things and places [HPO1]. Embedded web servers
are put into everyday things (e.g. printers, furniture, books or artwork) and are filled with in-
formation. Information about everyday objects is addressed by URLs and URL sensing is
used to discover object information. URL sensing means to discover the URL of a newly ap-
pearing object in order to locate its machine-readable information. URL sensing can be real-
ized with different sensor technology (e.g. visual barcode recognition, RFID, Network
discovery).

3.4.1 Pushing Web Technology into Physical Objects

In order to create an environment where nomadic users can find information about everyday
objects, the HP Cooltown group adapted traditional web technology to fit their requirements.

3 State of the Art 42

They found that the web model, which is built upon a decentralized but standardized inter-
action, provides a solid basis for environments that support nomadic users. Most of their
work focuses on the creation of bridges to map physical objects with digital information.
While digital information has naturally many links to the physical world, the physical world
lacks links to digital information. Most of the time, people work with physical objects instead
of digital devices. Therefore a closer link between virtual web content and physical objects
improves the usability of many applications and services. The Cooltown group integrates lo-
cation specific digital services, which are able to communicate with nomadic users. Things
that are physically related are grouped into places, where a visiting user can get information
about interaction possibilities with the physical objects he encounters. With places, Cool-
town realizes a primitive containment hierarchy, which is used to implement location de-
pendent services and applications.

Fig. 26 shows the different layers of the Cooltown web presence infrastructure. At the bot-
tom of there are mechanisms for gathering the address of the objects. These mechanisms per-
form URL sensing to receive a reference where the digital description of a discovered object
is stored. URL sensing is not specifically bound to a sensing technology, but is implemented
with a multitude of different object identification technologies, which were discussed in
Chapter 2.6. The middle layer represents the content exchange and coordination layer, which
is responsible for the transport and hyperlinking of semantic information over the HTTP pro-
tocol. On top of the web presence architecture stand the service-oriented communication
with nomadic users. This layer is responsible for delivering information about the objects to
the users.

Cooltown distinguishes between three main object classes: Person, Thing and Place. For
most of the appliances these three classes provide a pragmatic way without any complexity
or performance problems. The main goal of Cooltown is to make these three classes web
present. Web presence means that every object owns a digital description that provides meta
information about the object and links to related objects. Web presence means that informa-
tion about an object is accessible through the Web. The information about an object targets
different types of consumers. For humans a HTML representation is presented and for ma-
chines a machine readable format is used (e.g. RDF, CC/PP). There are several ways to make
real world objects web present. One possibility is to embed a web server inside an object in
order to enable the object to host its own digital information (for humans HTML and addi-
tional machine readable information). A second possibility is to host digital information
about an object on an external web server. A person is web present if any web server hosts a
directory, which is accessible with the URL of the person, which contains information about
the person, like the location of the person. Places are called web present if a so called Place-
Manager, which is a web server module, keeps track of all objects in a place.

3 State of the Art 43

nomadicity:

services in secure contexts
configurational transparency
communication with users

content layer:
content exchange and coordination
through HTTP

")
-
14
o
Text | Service URL ID
discovery & . .
URLs . ; sensing | resolution
registration

Fig. 26 Cooltown web presence infrastructure layers

In Cooltown the term context is defined as follows.

‘the context of an object is represented through a virtual collection of related resources’

Relevant pieces of information about an object are called ‘resources’ and the relationship be-
tween different objects are stored in a so-called ‘relationship directory’. Dynamic parsers
use HTML templates to generate a user specific view on machine readable data. Fig. 27
shows how a dynamic parser generates a user-specific view on the object information.

HTTP Client HTTP Client
Client Context

: XML
Secunty\ / Description
<, Dynamic
Parser Presenter
Relationship
Directory 4(\

HTML
HTTP Client ‘
HTTP Client

templates
Fig. 27 HP CoolTown’s architecture of a web presence server

3 State of the Art 44

The purpose of the web presence architecture shown in Fig. 27 is the generation of dynamic
content according to the actual state of related web-present objects. The Presenter module is
responsible for triggering the Dynamic Parser to generate the user-requested HTML resourc-
es. The Dynamic Parser receives information about related objects through the Relationship
Directory, which automatically stores all semantic object information as well as logic links
between them. The Security module is responsible for the security policy configuration. The
raw content information is generated and processed in a XML-based format.

URL sensing. In order to find the web presence of an object, as it is shown in Fig. 26, direct
and indirect sensing is used. A sensing process is called direct, if a device gets an URL from
another URL-emitting device (sent within beacons). This URL leads directly to the requested
resource via a PlaceManager, which is a server implementation providing policy-driven
views on location-relevant information. The PlaceManager is necessary in order to model
physical places, which do often not correspond to the underlying network topologies. Indi-
rect sensing, on the other hand, uses location-specific IDs that are used to look up the mapped
resource in a locally available registry.

4 The SiLiCon Context Framework 45

4 The SiLiCon Context Framework

The SiLiCon (=Siemens-Linz-Connection) framework was developed in cooperation with
Siemens Munich (CT-SE 2) and implemented between 2002 and 2004. The main focus in
this work was to provide a stable and easy to use software middleware in order to integrate
context information into existing application areas as well as to design new context-aware
demonstration applications. As the market for low-cost embedded sensor and actuator devic-
es grows, the need for an integration middleware software framework increases. As men-
tioned in Chapter 3, various research groups have already started to design software
frameworks, which support the retrieval, processing, and delivery of context information.
Many of these frameworks are specialized to a certain task and according to this task the
world model and design of those frameworks was chosen. For human-centered and infra-
structural scenarios the person, thing, and place classification system emerged. In this work
a more general role based classification mechanism is used to describe environments. The
requirements resulting from the use of radio based networks demand for a more decentral-
ized view of communication processes. The SiLiCon context framework is based on a peer-
to-peer communication architecture with support for different kinds of transport protocols
and message encoding mechanisms. This architecture provides a flexible basis for context-
aware applications that operate on a multitude of heterogeneous embedded and mobile de-
vices. The next sections show how the SiLiCon framework is able to simplify the context in-
formation retrieval, how it interprets state changes in the context information, and how the
distributed delivery of context information is managed.

4.1 Concepts

This section gives an overview of the SiLiCon framework’s main features by defining its
central terms in the following subsections. Every subsection introduces one specific aspect
of the SiLiCon framework. The detailed design and implementation of this list of features is
given between Chapter 4.2 and Chapter 4.7.

4.1.1 Retrieval of Raw Context Data

One of the most important tasks of a context information management framework is the gath-
ering of raw context data from different types of sensors. These sensors are divided into two
kinds, event-triggered sensors and time-triggered sensors, as it is described in [Fer02]. An
example for an event-triggered sensor is an RFID reader which triggers an event when an
appropriate RFID transponder enters the communication range. Whenever the state of the
RFID reader changes it triggers a context event with detailed information. Time-triggered
sensors, on the other hand, are able to measure context states that change continuously over

4 The SiLiCon Context Framework 46

time. For time-triggered sensors it is necessary to specify a certain reading interval. An ex-
ample for this kind of sensors is a temperature sensor which is able to measure the environ-
ment temperature or a sensor which is able to measure the ambient light level.

In addition to these sensors another important context information source should be men-
tioned. Any information in a context framework, which does not change its value automati-
cally, is called passive context information. For example, the maximum screen resolution of
a digital device is a passive context information. The user or the context framework is able
to change this information, for example if the device gets a new screen, but the passive in-
formation does not change automatically as the temperature information does.

One task of the SiLiCon framework was to simplify the context information retrieval for
the application designers. The framework simplifies the retrieval process to a level where
there is no difference between the various kinds of context retrieval mechanisms. Fig. 28
shows the SiLiCon framework’s classification of context information retrieval mechanisms,
with some concrete sensor examples. Every low-level context sensor is derived from a base
class that abstracts all available context sensors. In Fig. 28 this base class is represented by
the node called context attribute. This node is called attribute, because it represents one spe-
cific attribute or property of an environment or of an entity in this environment.

(context attribute)

(active attributes) (passive attributes)

(time-triggered) (event-triggered) ‘ screen resolution H human biometrics|

‘ temperature H ambient light‘ ‘ RFID reader H containsH isIn H roomStatus‘

Fig. 28 SiLiCon classification of context retrieval mechanisms

The SiLiCons attributes are similar to the static declarations of the RFD standard. The RDF
(Resource Description Framework) standard has beed defined by cellular phone manufac-
turers like Nokia to create a description for specific attributes of a mobile phone. The GSM
service providers can use this RDF descriptions to improve their service delivery according
to the attributes of specific client phones. It is possible to specify attributes like the screen
resolution, computational power, audio in/output capabilities, storage possibilities, calendar
and mail functionality and many more. RDF is an XML-based representation for static entity
properties. It does not contain any information that changes over time unless an external
process changes the RDF description.

In relation to the terms used in the RDF standard we define the term attribute as follows:

"An attribute is a software component that expresses one specific aspect of an entity in
order to be able to provide services which are related to this specific aspect.’

The SiLiCon framework uses a set of attributes to describe objects or entire environments.
Attributes can be reused in different environment scenarios and enable the rapid context-

4 The SiLiCon Context Framework 47

aware application development. All attributes are derived from the class CFAttri bute,
which provides basic methods for initializing and for processing of events. A simplified view
on the interface of class CFAt t ri but e is given here:
public class CFAttribute {

private String identifier;

public CFAttribute(XmlTag tag);

public void init();

public void CFEventReceived(Object sender, CFEvent ev);

public Object CFSyncEventReceived(CFEvent ev);

}

The field i denti fi er represents a unique identifier, with which the attribute can be refered
to. The constructor of an attribute takes a Xml Tag object which contains the initial configu-
ration elements. The methods CFEvent Recei ved and CFSyncEvent Recei ved are responsi-
ble for receiving incoming events.

Attributes that derive from the class CFAtt ri but e can perform several different tasks. At-
tributes can represent key value pairs which are accessible with getter and setter methods.
Attributes can wrap sensor and actuator hardware, in order to offer methods to access the spe-
cific hardware functionality. A possible attribute could be a display attribute which offers
methods to get the display resolution information and to change the resolution information.
Every method of an attribute which is publicly accessible and marked with CF”’ is called a
service or a context service. Attributes are able to trigger events in order to inform other ob-
jects about information changes.

4.1.2 Object Description with Entities

To describe context-aware scenarios it is necessary to create a representation of all entities
that are relevant for this scenario. As Schilit already mentioned in the PARCTAB project
(chapter 3.1), a dynamic environment object is a non-specified collection of data. In the SiL-
iCon framework a dynamic environment object is represented by a context entity. A context
entity, or an entity for short, is a non-specified and non-classified collection of attributes. We
define the term entity as follows:

"An entity is a collection of attributes which describe every relevant aspect of an object
that is a member in a context-aware scenario.’

An entity is responsible for the representation of object information in a context scenario. En-
tities express their information with attributes that can be loaded into an entity. Every entity
contains a collection of attributes, that is used by applications for classification purposes. Ap-
plications can use these attributes to assign roles to entities in order to classify them. A col-
lection of attributes is called template. Fig. 29 shows three entities with their attributes. The
first entity represents a PDA device, the second a person and the third a location.

4 The SiLiCon Context Framework 48

Siemens Loox PDA| |Wolfgang Beer Seminar Room 209
| RFID-reader | | birthday | | RFID-reader |
‘ 3D tracker ‘ ‘ biometrics | ‘ maxPersons |
screen resolution socialnumber beamer
light sensor PDA light sensor
| microphone ‘ ‘ laptop | ‘ microphone |
‘ isIn ‘ ‘ contains |

Fig. 29 A group of entities describing a PDA, a human user and a seminar room

Attribute templates fulfil several important tasks in the SiLiCon framework. An attribute
template can be used by an application to classify an entity which enters a scenario and to
assign an application-specific role to it. An application could for example identify all persons
in an environment by finding all objects that have a Person template. This is called role-
based classification. Role-based classification provides a powerful mechanism for middle-
ware context frameworks because the attributes of entities and therefore their roles can
change at runtime. Furthermore, attribute templates can be used by visual builder tools to cre-
ate new instances of entities. So, if a new instance of an entity should describe a person, it is
simple to use the Person template to create the basic skeleton of this instance. Classification
with attribute templates is an important design decision in the SiLiCon framework. It differs
completely from static classification approaches where entities are classified at design time.

4.1.3 Event-Based Communication

In the SiLiCon framework any communication between entities and attributes is event-
based. When the actual state of the context world model changes, context events are triggered
to inform interested communication partners about the state change. Every entity or attribute
is able to trigger two types of context events: addressed events and non addressed events.
When an event is triggered it is put into an event queue, which is global for each host. This
global event queue is actively delivering context events to the event destinations. If the event
is non addressed, the queue delivers it to every entity on the local host. The entities them-
selves have to check if they are interested in the event or not. If the event is directly addressed
the queue delivers it to the specified receiver.

Every context event contains information about the entity and the attribute which trig-
gered the event, the name of the event, and a list of parameters containing information about
the event. If it is a directly addressed event the event object also contains information about
the receiving entity and attribute, as it is shown in Fig. 30.

4 The SiLiCon Context Framework 49

Entity X E t: IDResolved
i vent: esolve
RFID-Attribute triggers addressed even.’t=
Parameters:
TaglD:00A3F578
triggers non-addressed event SourceEntity:
\/ Entity X
Event: IDResolved SourceAttribute:
5 RFID-Attribute
Parameters:
TaglD:00A3F578 DestinationEntity:
SourceEntity: Entity Z _
; DestinationAttribute:
Entity X .
SourceAttribute: \Atlribute 2)
RFID-Attribute ‘
DestinationEntity:
- Entity Z
DestinationAttribute: Attribute Z

Fig. 30 Trigger of addressed and non-addressed context events

The transport of context events is completely transparent for the sender and the receiver.
4.1.4 Dynamic Definition of Context Scenarios through Rules

One of the most important aspects of our work is the possibility to define distributed inter-
action scenarios between attributes using £CA rules (Event Condition Action Rules). An
ECA rule consists of an event, a condition and an action. If an event occurs and the condition
yields true the corresponding action is performed. An example ECA rule, which reacts on the
appearance of a specific RFID transponder, is shown here:

on RFID.TagAppeared (string id) {

if (id == “000A03CE000”) {
/I perform any actions
}

}

With ECA-rules it is possible to specify how an environment or a single entity reacts on a
specific event. The scenario designer is able to define a set of rules that specify which actions
are triggered on a state change. As described before, the SiLiCon framework is event-based.
Thus the scenario designer defines rules that describe the reaction to every event in the
framework. Rules can be added at runtime to change the behavior of the whole system. It is
possible to implement a distributed rule editor that can be used to develop and deliver ECA
rules over a network at runtime. ECA context rules provide a powerful and dynamic mecha-
nism, to define the behavior of context systems. The total set of context rules specifies a state
machine which controls the distributed system. By adding or deleting rules at runtime the
scenario designer is able to change this state machine dynamically. It is even possible for the
action part in a rule to trigger the insertion of new rules or the unloading of existing rules at
runtime. So the state machine is able to change itself at runtime by managing the rule repos-

itory.

4 The SiLiCon Context Framework 50

4.1.5 Discovery of Entities in Local Environments

Working within a mobile and dynamically changing network environment makes it neces-
sary to provide a mechanism for resource discovery in local environments. Entities which en-
ter an environment must be able to discover possible communication partners. Depending on
the running application, the middleware has to discover entities and their attributes in order
to determine in which role the entities act at the moment. For a chat application, which sends
messages to persons in the environment, the SiLiCon middleware has to discover all entities
which act in the role of a person. The application can define specific attribute templates or
use already existing attribute templates. The middleware takes an attribute template that de-
scribes a certain role and the lookup mechanism discovers all entities that act in this role. The
application can then perform application-relevant interactions with these entities such as
sending messages to a set of people.

The discovery mechanism, like the transport mechanism, is implemented as a pluggable
module that can be exchanged. As an example we implemented a module which sends IP
broadcast or IP multicast packages to announce discovery information in the local network
environment.

4.1.6 Configuration of Context Applications with XML Scripts

For application designers it should be as simple as possible to define new environments and
to design context-aware applications that are running within these environments. The design-
er starts with the identification of relevant entities. The set of those entities is not fixed, how-
ever, because entities can enter or leave the environment at any time. The identified entities
only provide an initial set of members that fulfil the requirements. The SiLiCon framework
offers the possibility to configure entire environments and interaction scenarios with XML
scripts. The application designer configures a context container on each digital device, which
is able to host and to manage a collection of entities. A context container is an entity that ex-
ists only once per host. It provides references to shared resources (lookup, transport and log-
ging modules) and holds a collection of hosted entities. The container configuration contains
the specification of different transport modules, lookup modules and a system logging facil-
ity, as well as a link to the configurations of the attributes. The configuration of an entity con-
sists of a list of attributes with their initial parameters and a set of context rules which
coordinate the interaction between the entity and its communication partners.

The advantage of this hierarchically structured XML configuration of context-aware ap-
plications is that even complex scenarios can be created automatically or by a visual builder
tool. The application designer does not have to write a single line of code, but designs a com-
plete scenario with any XML editor such as Microsoft Visio or XML Spy.

4.1.7 Resource and Performance Optimization

The SiLiCon framework was written in Java and is based on Sun’s Personal Java Profile
[PJSpec] for running on mobile devices. The Personal Java Profile implements the JDK 1.1.8
base class library. This means that most of the modern libraries for parsing XML-coded data
(jaxp, xerxes), creating web services (axis, glue), or creating a peer-to-peer framework (jxta)
are not supported at the moment.

4 The SiLiCon Context Framework 51

We decided to use the kXML2 library for parsing XML-coded data and the kKSOAP?2 li-
brary to parse and create SOAP calls [Enhydra]. Both libraries were designed to run on mo-
bile devices and do not need much storage (20KB for kXML2 and 50KB for kSOAP2).

In order to create WSDL descriptions of context services at runtime, a library called kWS-
DL was implemented. KWSDL takes a Java class and generates the WSDL description of all
public methods with their parameters. KWSDL is based on kXML2 and the generation proc-
ess is more efficient than with comparable libraries. The performance gain was achieved by
limiting the possible method parameter types to simple types (long, double, boolean, char
and String).

4.2 Framework Architecture

The basic concept of the SiLiCon framework allows the description of digital and non-digital
entities with their attributes. In this work digital entities are referred to as entities which are
able to store, process, and deliver digital data. They are able to host the SiLiCon framework
and to store their own digital description. Examples for digital entities, sorted by their avail-
able CPU power, storage and memory amount are: servers, personal computers, laptops,
PDAs, industrial PC104s, mobile phones, and embedded processors.

Non-digital entities, on the other hand, represent objects which are not able to process dig-
ital data, such as humans, everyday things, or locations. For this kind of entities it is neces-
sary to use an object identification technology in order to sense them within the environment.
Non-digital objects are depending on digital devices to host their digital descriptions.

The SiLiCon framework was designed to work in a dynamically changing network envi-
ronment, also called ad-hoc network. Such networks do not need to have access to a global
network. Typical instances of ad-hoc networks are personal area networks that build auto-
matic connections between mobile phones, headsets and other personal digital devices. In
this kind of networks it is necessary that every communication partner is able to provide in-
formation or services (i.e. act as a server) and to receive information or to use services (i.e.
act as a client). An entity must implement both a client and a server part in order to be able
to communicate with other entities. The disadvantage of these networks is that they are not
stable. Entities are likely to appear or to disappear in the environment at runtime. There is no
central authority where the entities can check whether a communication partner is reliable or
not.

A context container, which manages the life cycle of a collection of entities, is implement-
ed through the class CFCont ai ner Enti ty. Every digital device in the SiLiCon framework
has an instance of class CFCont ai ner Enti ty. CFCont ai ner Enti ty is derived from CFEn-
tity and inherits all functionality from a genuine entity. At startup, the container parses a
configuration file and loads the specified modules. After the container has successfully load-
ed all sending and receiving transport modules, the lookup module and the logging module,
it starts to load the specified collection of entities. The class CFEnt i t y represents an entity.
Every entity is itself responsible for loading its attributes from the configuration file. Fig. 31
shows the initializing process at the container startup. When the container initializes, it calls
the constructor of its base class CFEnt i t y with an Xnl Tag as actual parameter. The Xnl Tag

4 The SiLiCon Context Framework 52

contains the initial configuration of the container, the configuration of all entities and their
attribute collections.

CFContainerEntity CFEntity CFAttribute

main CFEntity(XnLITag config)
create container entity load inventory

I
configure lookup module

CFAttribute(XmITag config)

) |
configure transport modules

Fig. 31 Simplified container initialization

The constructor of class CFEntity loads its inventory as a collection of entities and at-
tributes. The attributes are also initialized through calling their constructor with a configura-
tion Xm Tag, which contains the attribute-specific XML elements. After the container entity
loaded and initialized its lookup module and a collection of transport modules, it loads all
contained entities and attributes. Fig. 32 shows the configuration’s XML schema. It contains
a root element *Container’ which initializes the container entity. The Container element con-
sists of one "Logging’, one ’Lookup’, one *Transport’ element, and a collection of entities
that are managed by the container. The Transport element always contains two elements; the
’SendModules’ element and the *ReceiveModules’ element. This pair of elements contains
the configuration of all sending and receiving transport modules and their encoding mecha-

nisms.
"
— Encoder
! Logging . Decoder
1| sendModules 1 Module |
! Lookup 01 ModuleSpecific
Container 1] .
L Transport — — Encoder
| ReceiveModules —"| Module |-
M Entity 1 Decoder
0-1 .
—— ModuleSpecific

Fig. 32 XML schema for the container configuration

The container entity also initializes its event queue, which is responsible for the delivery of
context events (addressed events and non-addressed events). In every container there is ex-
actly one event queue. All the entities hosted in a container refer to this event queue and use
it to send their events.

Whenever an entity is created at container startup time it creates and initializes an instance
of a context rule interpreter, which is implemented in class CFI nt er pr et er . The interpreter
is able to load context rules into an entity and to interpret incoming events with these rules.
When the initialization process has ended, the container waits for incoming events triggered
by entities inside the local container or by remote entities. Fig. 33 shows the structure of a

4 The SiLiCon Context Framework 53

container entity after the startup process. A container entity, like every entity, also contains
an interpreter which is able to react on events.

CFContainerEntity
CFEntity CFEntity
CFinterpreter CFlnterpreter CFlnterpreter
CFAttribute CFAttribute
CFEventQueue CFAttribute CFAttribute
CFAttribute CFAttribute
Log

CFLookuplnterface|| CFSendModulelnterface|| CFReceiveModulelnterface)

BMLookup ‘ CFHttpSendModule H CFHttpReceiveModule ‘
!P Broadcas.t or Multicast

implementaion module ‘ CFTcpSendModule ‘ ‘ CFTcpReceiveModule |
‘ ...Lookup H ...SendModule H ...ReceiveModule ‘

Fig. 33 SiLiCon framework architecture module overview

Events that are triggered by the container entity itselve, could also be interesting for all enti-
ties inside the container. Examples for such events are EntityAppeared and EntityDisap-
peared, which are triggered by the lookup module of the container when there is a state
change in the local environment. The interpreter module of each entity contains a repository
of ECA rules, which are able to catch specific events according to specified conditions. Con-
ditions can refer to event parameters or to the global state of the entity and its attributes. The
interpreter of an entity defines a state machine which represents the behavior of the owner
entity according to its environment.

The lookup module interface is defined by an abstract class called CFLookupl nt er f ace.
The BMLookup module implements this lookup interface to provide an IP broadcast and IP
multicast lookup mechanism.

4.3 Lookup and Discovery Mechanism

The abstract class CFLookupl nt er f ace defines methods for the implementation of different
lookup mechanisms. The lookup module is an important part inside the framework, because
the delivery of events is based on it. The event queue uses the lookup module to resolve the
address of the destination entity in order to be able to deliver directly addressed context
events. The following lookup mechanisms can be found in the literature:

* Request Protocols: An entity which tries to discover a lookup service sends out a
broadcast request and waits for incoming information. When a lookup service gets
a request message, it opens a reliable connection to the requesting entity and pro-
vides the discovery information (which contains the address of the container and
its supported transport protocols). To transport the request messages, a non reliable
transmission protocol is used. Request messages should be sent several times,

4 The SiLiCon Context Framework 54

because it could happen that the messages get lost before they reach a lookup serv-
ice provider.

* Announcement Protocols: A lookup service provider permanently sends out serv-
ice announcement messages to inform about the services it provides. Clients that
enter the local environment receive these announcement messages and can decide
whether they want to contact the service provider or not.

Join and Leases. Once a service provider discovered a lookup service provider, a service
can be registered at the lookup service (called join) for a certain period of time (called /ease
request). For this period of time the service provider guarantees that the registered service is
available and running. The service provider acknowledges that it offers the joined service to
other client entities for a period of time that has to be equal or larger than the service lease
(called lease grant). The use of leases and timeout periods is necessary, because digital de-
vices, such as PDAs, could be turned off without removing the service registration from the
lookup service. The lookup service provider is able to remove services after their lease expi-
ration. An example for lease and grant messages of Jini service providers is shown in Fig.
34: the Jini service joins a lookup service and requests a lease time (Lr). The lookup service
grants a lease time (Lg) which has to be greater or equal to the requested lease time (Lr). The
periodic lease requests have to be sent before the last granted lease time expires. Because the
lease request is sent over a reliable network protocol (TCP), the client is able to check if the
lookup service is still running and vice versa. The responsiveness of the lookup sequence is
measured with the error time (7err), shown on the right-hand side of Fig. 34. The error time
is calculated as Terr = Tg+ Lg— Tr, which means the time that is left before the lease
grant expires. The size of Terr depends on the network latency. If the responsiveness of the
lookup sequence is calculated as being too small, it can happen that the service periodically
expires despite of the fact that the lookup service is still on.

Jini Service Jini Lookup Service Jini Service Jini Lookup Service
T E lease request [Lr] >E T E lease request [Lr] >E
Tgi< lease grant [Lr< Lg | E Tg :< lease grant[Lr<Lg] |

lease request [Lr] >:

Tri
Tg +Lg J Tel’r

lease grant[Lr<Lg] \

Tr;
Tg+Lg —:
79 -

lease request [Lr]>:

Fig. 34 Lease and grant sequences of the Jini lookup service

The Jini lookup sequence is a typical example for a service lookup process in dynamically
changing environments. Discovery and service lookup mechanisms are also an essential part
of the “self-healing and self-adapting networks” research area [Da02].

The SiLiCon framework’s discovery and lookup interface does not force the application
designer to use a specific kind of discovery and lookup mechanism. The framework’s lookup

4 The SiLiCon Context Framework 55

interface defines methods for the registration of local entities and for the lookup of entity ad-
dresses and attribute templates. The application designer can use the predefined BM.ookup
module or can implement new lookup and discovery modules. The BMLookup module is
able to send IP broadcast packages or IP multicast packages (broadcasting to a IP multicast
group). IP broadcast and multicast were combined in one module because both use the same
sending mechanism but a different destination address. Other module implementations could
include the Jini discovery mechanism or a JXTA discovery mechanism in order to connect
to other distributed computing frameworks. Here is a list of methods that the abstract class
CFLookupl nt er f ace defines for implementing lookup modules:

* public abstract String getLookupldent(); Returns an identifier specifying which
kind of lookup mechanism is implemented (e.g.: [P MULTICAST).

* public void addSendModule(CFSendModulelnterface si); Registers a new transport
send module.

* public void removeSendModule(CFSendModulelnterface si); Removes a transport
send module from the list of available send modules in this context container.

* public void addReceiveModule(CFReceiveModulelnterface ri); Registers a transport
receive module.

* public void removeReceiveModule(CFReceiveModulelnterface ri); Removes a trans-
port receive module from the list of available modules in this context container.

* CFAddress getCFAddressFor(String entity, String protocolldent); Returns the
address of a given entity with the specified protocol identifier.

* public abstract void CFaddCentralLookupAddress(URL adr); Allows the registra-
tion of one or more central lookup services in order to decrease scalability prob-
lems by using one or more central lookup services.

* public abstract void CFremoveCentralLookupAddress(URL adr); Removes a central
lookup service.

* public void addCFLookupEventListener(CFLookupEventListener I); Registers a lis-
tener, which receives lookup events. These lookup events are delivered directly as
Java event objects and are not handled by the context interpreter.

* public void removeCFLookupEventListener(CFLookupEventListener I); Removes a
lookup event listener.

IP broadcast/multicast lookup module. The BM.ookup module represents the default
lookup module implementation for the SiLiCon framework. It is possible to switch between
the IP broadcast mechanism and the IP multicast mechanism to send the lookup packages ei-
ther as broadcast or as multicast packages. This switch can be set within the context contain-
er’s configuration file or at runtime through a method call. The BM_ookup module is based
on a broadcast announcement protocol which uses leases. Because the SiLiCon framework
is also able to operate in ad-hoc networks, no access to any global lookup service provider is
guaranteed. The SiLiCon framework is designed for access of services in infrastructural net-
works and for direct access of services between two communication partners, which commu-
nicate over an ad-hoc connection. To support direct access of services between two or more
communication partners, it is necessary that at least one of them provides a lookup service.
To guarantee communication with every entity, each context container hosts its own lookup

4 The SiLiCon Context Framework 56

service module. On every host there exists exactly one lookup service (inside the context
container) which provides a description of the context services running on the local host.

The class BM_ookup contains two members which are responsible for the broadcast an-
nouncement and the broadcast receiving. Class CFBroadcastNotifier sends out lookup infor-
mation of the local context container and about the entities which are available locally. A
context container therefore announces its appearance inside an environment with such broad-
cast packages. The broadcast information is XML-encoded in order to offer platform- and
language-independent lookup information.

The class CFBr oadcast Recei ver receives all the broadcast packages that were sent in the
local network. It parses the lookup information in the packages, which includes the entity and
attribute information and registers discovered entities that appeared. The lookup information
package includes a lease value which defines how long the information is valid. The CF-
Broadcast Recei ver checks the list of entities for entities which timed out and removes
them from the list. One of the advantages of this announcement mechanism is the fact that a
container is not responsible for unregistering itself from other lookup services. If a device is
powered off or disappears, all lookup services remove their reference to this device after its
lease time has expired. PDAs are likely to power off or to disappear unsuspectedly. Every
device is able to specify its own lease time according to its type. A server will specify much
more lease time than a PDA. Fig. 35 shows the periodic lookup information announcement
process of the lookup module BMLookup_1. The announcement sequences of module
BMLookup_2 and BMLookup_N are the same and are therefore not shown in Fig. 35.

BMLookup_1 BMLookup_2 BMLookup_N

T lookup info [Li1] >:

lookup info [Li1] »1

lease_1|"'

. | lookup info [Li1] :
T+ 1 *lease_1 : L lookup info [Li1]

L
lease_1| |

T+N *lease_1 :-~~-'9°f“’-p-'”-f°-[k”-]-> lookup info [Li1]
! lookup info [Li
Tttt TTToTTTmAm i m N >

Fig. 35 Announcement sequence of BMLookup module number one.

Fig. 36 shows a visualization of the XML Schema definition for the lookup information an-
nouncement packages, which are sent by the BM.ookup module. The lookup XML element
contains additional information about the lease time, the computational power of the host
hardware platform (which is important for entity and attribute migration), synchronization
time and a command string which is set to ANNOUNCE.

4 The SiLiCon Context Framework 57

Sending | —"{ Module |
Receiving}u’ Module |

Template | —"| Attribute |

Fig. 36 XML Schema definition of a BMLookup announcement package

The following listing shows an example of a lookup information package from a BM.ookup
module. The lookup element contains attributes which specify the lease time, the CPU power
level of the sender, a command and the name of the container. The sending and receiving el-
ements contain information about the collection of supported transport protocols and their
address. Every entity, which is contained by the announcing container, creates a template
with all of its contained attributes and adds this template to the broadcast information. The
name of the template is the identifier of the entity:

<?xml version="1.0" encoding="utf-8"?>
<lookup ident="Artifacts"

power="1"
time="..."
lease="10000"

cmd="ANNOUNCE"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:cfBMlookup="jku.at/context/Schematas/BMLookup">
<sending>
<module name="HTTP_1_1"/>
<module name="TCP_SOCKET"/>
</sending>
<receiving>
<module name="HTTP_1_1" adr="http://140.78.145.32:8079"/>
<module name="TCP_SOCKET" adr="http://140.78.145.32:8077"/>
</receiving>
<template name="Artifacts">
<attribute name="ControlRules" interface="..controlrules.ControlRules"/>
<attribute name="HttpResourceAtr" interface="...tangible.HttpResourceAtr"/>
<attribute name="SystemCalls" interface="...platform.SystemCalls"/>
<attribute name="Rfid" interface="uni.linz.context.attributes.rfid.Rfid"/>
<attribute name="DynamicLoader" interface="...stdattrs.DynamicLoader"/>
<attribute name="BMLookup" interface="...transport.BMLookup"/>
<attribute name="MouseDropArea" interface="...swing.MouseDropArea"/>
<attribute name="Menu" interface="...tangible.Menu"/>
</template>
<template name="Thing">

</template>
<template name="Person">

</template>
<template name="Place">

</template>
</lookup>

4 The SiLiCon Context Framework 58

4.4 Pluggeable Transport Modules

As already mentioned in Chapter 4.3, it is possible to implement different transport modules,
in order to extend the SiLiCon framework’s communication possibilities. A transport mod-
ule is split into a sending and a receiving module, which can be separately implemented and
registered with a lookup module. When a receiving module is installed in a lookup module,
the entities which are using this lookup module (i.e. which reside in the same context con-
tainer) are able to receive context events that are sent over compatible sending modules. As
the interface of a lookup module (CFLookupl nt er f ace) shows, it is possible to register more
than one sending or receiving module. That implies, that the lookup has to compare the send-
ing modules of an event’s source entity with the receiving modules of the event’s destination
entity, in order to find a compatible pair. A compatible pair of sending and receiving modules
is necessary to deliver an event from the source to the destination entity. A transport module
has to provide a unique identifier that consists of the name of the protocol which the module
implements (e.g. TCP, HTTP, SMS, or SMTP).

The lookup module uses the first compatible pair of transport modules for sending events,
but this mechanism can easily be extended to consider priorities. Priorities could be specified
by the event source, according to specific demands that an application has. For example, in
order to send large data packages it would be more efficient to use a binary transport protocol
and a powerful encoding mechanism. A binary transport protocol can be used only, if the
event receiver has registered a compatible receiving transport module.

Another important aspect of the transport modules is the event encoding style. Examples
for encoding styles are Java Object Serialization and XML based SOAP. CFEvent -
Encoder | nt er f ace and CFEvent Decoder | nt er f ace represent interfaces for the implemen-
tation of different event encoding or decoding styles. Every transport module has to use
instances of both interfaces, to encode outgoing events and to decode incoming events.

While the sending of asynchronous events requires just an encoding module and the re-
ceiving requires just a decoding module, synchronous events need both modules. To send or
receive synchronous events a module has to receive and to send the response message imme-
diately. Therefore, it is necessary to have a pair of compatible encoding and decoding mod-
ules.

The different implementations of the interfaces CFEvent Encoder I nt er f ace and CFE-
vent Decoder | nt er f ace have to provide a unique identifier which specifies the kind of en-
coding. In combination with the unique identifier of the transport module a lookup module
has all the information it needs to find a compatible transport module. Fig. 37 shows how a
lookup module manages a set of sending and receiving transport modules with their respec-
tive encoding styles.

Fig. 37 shows an example container which has two different transport protocols. The
classes CFTcpSendMbdul e and CFTcpRecei veModul e implement communication modules
that use plain TCP sockets to transmit the encoded event data. The TCP module in Fig. 37
uses the two encoding classes CFXnl Event Encoder and CFXm Event Decoder to encode and
to decode the event data.

The second transport protocol, which is implemented in the example, is represented by
the classes CFHt t pSendMbdul e and CFHt t pRecei veModul e. These modules implement the

4 The SiLiCon Context Framework 59

HTTP protocol, in order to transmit event data over a high level transport protocol that is of-
ten used for SOAP messages and static HTML pages. The HTTP protocol was chosen in or-
der to test to what extent the web service technology can be used to extend the framework’s
transportation and integration possibilities.

In combination with the HTTP modules, SOAP encoding and decoding modules were im-
plemented, which are also shown in Fig. 37.

context container

CFTcpSendModule CFTcpReceiveModule
‘ CFXmIEventEncoder ‘ | CFXmIEventEncoder |
‘ CFXmIEventDecoder | | CFXmIEventDecoder |
CFHttpSendModule CFHttpReceiveModule | g
egend:
‘ CFSoapEventEncoder ‘ | CFSoapEventEncoder | 9
—» uses
‘ CFSoapEventDecoder | | CFSoapEventDecoder | ntert
interface

[[] module implementation

Fig. 37 Set of registered transport modules with their encoding styles

The SiLiCon architecture allows any combination of encoding modules and transport mod-
ules. Fig. 37 shows just two possible combinations.

CFTransportModule. The following abstract class CFTr anspor t Modul e is the base class
for all sending and receiving transport modules in the SiLiCon framework:

public abstract class CFTransportModule {
public String getProtocolldent(); // identifies the protocol which is used (e.g.: HTTP or TCP)
public void setProtocolldent(String i);
I returns the encoding style object which is responsible for encoding the payload (CFEvents)
public CFEventEncoderinterface getEncodingStyle();
public void setEncodingStyle(CFEventEncoderinterface e);
I returns the decoding style object which is responsible for decoding the return of sync events
public CFEventDecoderinterface getDecodingStyle();
public void setDecodingStyle(CFEventDecoderinterface e);
public void setLookup(CFLookuplinterface I);
public CFLookuplnterface getLookup();
public abstract URL getAddress(); // returns the URL address for the transport object
public abstract CFEvent sendSync(CFEvent ev);
public abstract void sendAsync(CFEvent ev);
public void addTransportEventListener(CFTransportEventListener |);
public void removeTransportEventListener(CFTransportEventListener);

4 The SiLiCon Context Framework 60

/I configures the module at startup acording to the xml-configuration
public abstract boolean configure(XmlITag tag);

/I method which offers the functionality to read data from a input stream
public static byte[] readData(InputStream in) { ... }

}
CFEventEncoderInterface. CFEvent Encoder I nt er f ace represents the interface for all
event encoding modules in the SiLiCon framework. The encode method gets an event object
and returns the encoded byte array:

public interface CFEventEncoderinterface extends CFEncoderinterface {
public byte[] encode(CFEvent evt);

}
CFEventDecoderInterface. CFEvent Decoder | nt er f ace represents the interface for the
event decoding modules in the SiLiCon framework. The decode method gets a byte array and
returns an event object:

public interface CFEventEncoderinterface extends CFEncoderinterface {
CFEvent decode(byte[] b) throws IOException;

}

TCP protocol modules. Using raw TCP sockets to transmit event data over IP-based net-
works is one of the most efficient implementations of a transport module. The CFTcpSend-

Modul e allows one to open a TCP socket to the destination CFTcpRecei veMbdul e and to
transmit an array of bytes. A TCP connection is a reliable connection, which means that if
the destination module is reachable and the connection is successfully established it is guar-
anteed that the destination gets the context event (except if the connection breaks, but in that
case the sending module gets an | CExcept i on and is able to retransmit the event).

The CFTcpRecei veMbdul e starts a thread which is responsible for listening to incoming
TCP connections. The listening thread is implemented by the class CFEvent Recei ver. If a
new connection is established the thread reads the data from the TCP socket and decodes it
using its registered event decoder object. In the decoding was successful, the receive module
puts the received context event in the local event queue.

CFXmlEventEncoder and CFXmlEventDecoder. The modules CFXnl Event Encoder and
CFXml Event Decoder are implementations of the interfaces CFEvent Encoder | nt er f ace and
CFEvent Decoder | nt er f ace. These modules use a proprietary XML schema definition to
encode and decode context events into XML messages. The schema was designed to contain
the information that the class CFEvent offers.

The Xml schema definition for the encoding style is shown in Fig. 38. The root element
is called event. Its subelements destination entity and destination attribute specify the desti-
nation of the event message, while the elements source entity and source attribute specity
the source of a message. The event command element contains the name of the event and a
list of parameters, which can be found in the parameter list element. The parameter list has
a set of parameter elements which hold the name, type, and value of an event parameter.

The synchronous element specifies if the event message should be delivered synchronous-
ly, which means that an immediately response is expected. If the event is delivered asynchro-
nously no immediate response is expected.

4 The SiLiCon Context Framework 61

The sequence number element holds the message sequence number at the source entity’s
context container. With this number the transport module is able to guarantee the correct or-
dering of incoming events, even when a unreliable protocol such as UDP is used.

—1{ destination entity ‘

‘ event }1—41’ destination attribute ‘

—1’ source entity |

—1{ source attribute ‘ 1 hame
1 1 — 1 11
—1{ event command ’—' parameter list }‘n parameter type
1 rVal
synchronous value

1
—{ sequence number ‘

Fig. 38 Proprietary XML encoding scheme for context event objects

The following XML listing shows an example for an XML-encoded context event. The CFE-
vent instance is directly mapped into an XML schema representation. The XML message
contains the sending and receiving entity and attribute as well as the event name (represented
through the command element). The parameter list element contains the parameters that are
sent with the event:

<?xml version="1.0"' encoding="UTF-8'?>
<xmlEnc:Event tns="http://www.jku.at/silicon/XmIEncoding'
xmins:xmlEnc="http://www.jku.at/silicon/XmIEncoding/schema'>
<xmlEnc:SourceEntity>
<xmlEnc:EntityName>PDA_Loox_02</xmlIEnc:EntityName>
</xmlEnc:SourceEntity>
<xmlEnc:DestinationEntity>
<xmlEnc:EntityName>PDA_Loox_03</xmIEnc:EntityName>
</xmlEnc:DestinationEntity>
<xmlEnc:SourceAttribute>
<xmlEnc:AttributeName>Time</xmIEnc:AttributeName>
</xmlEnc:SourceAttribute>
<xmlEnc:DestinationAttribute>
<xmlEnc:AttributeName>Notification</xmIEnc:AttributeName>
</xmlEnc:DestinationAttribute>
<xmlEnc:SeqNr>0</xmIEnc:SeqNr>
<xmlEnc:Command>
<xmlEnc:CommandName>Notify</xmIEnc:CommandName>
<xmlEnc:ParameterList>
<xmlEnc:Parameter>
<xmlEnc:ParameterName>Message</xmIEnc:ParameterName>
<xmlEnc:ParameterType>string</xmlEnc:ParameterType>
<xmlEnc:ParameterValue>Hallo</xmIEnc:ParameterValue>
</xmlEnc:Parameter>

4 The SiLiCon Context Framework 62

<xmlEnc:Parameter>
<xmlEnc:ParameterName>Kind</xmlEnc:ParameterName>
<xmlEnc:ParameterType>long</xm|Enc:ParameterType>
<xmlEnc:ParameterValue>1</xmlEnc:ParameterValue>
</xmlEnc:Parameter>
<xmlEnc:Parameter>
<xmlEnc:ParameterName>BoolParam</xmIEnc:ParameterName>
<xmlEnc:ParameterType>boolean</xmIEnc:ParameterType>
<xmlEnc:ParameterValue>true</xmlEnc:ParameterValue>
</xmlEnc:Parameter>
</xmlEnc:ParameterList>
</xmlEnc:Command>
<xmlEnc:Synchronized>false</xmlEnc:Synchronized>

</xmlEnc:Event>
HTTP protocol module . The HTTP [HTTP] protocol implementation consists of a module
CFHt t pRecei veMbdul e, which is as simple HTTP server, and a module CFHt t pSendModul e,
which is responsible for sending data over the HTTP protocol. Together with the SOAP en-
coding module the HTTP transport protocol offers an interface to the web service world,
which is described in Chapter 4.4.1.

The HTTP transport module allows also the delivery of an automatically generated
HTML representation of the context container structure. A representation like this is gener-
ated by many web service development environments to simplify the development process.
With this HTML representation the scenario designer is able to navigate through the contents
of a container and to get a link to the WSDL description of an attribute’s interface. The inte-

gration of web services into the SiLiCon framework is discussed in the next section.
4.4.1 Integration of Web Service Mechanisms

In the last few years, the term web services was established by a group of international com-
panies to push the development of distributed services. Web service is a term that implies the
use of a specific family of standards. These standards define how distributed services have
to describe their service interfaces (WSDL = Web Services Description Language) [WSDL],
the kind of interaction (SOAP = Simple Object Access Protocol) [SOAP] and even how these
services can be found in a global network (UDDI = Universal Description, Discovery and
Integration) [UDDI]. All these standards are based on XML.

Motivation for the web service integration. The basic motivation for integrating web
services into the SiLiCon framework was the appearance of many web service tools and serv-
ices that could be used in our framework. Actually, the web service technology is not a mon-
olithic middleware solution like CORBA [CORBA] or Java RMI, but it offers some
interesting extensibility aspects, even though it is still under development. One of these as-
pects is the use of an XML-based standard to describe the service interfaces, called Web
Services Description Language (WSDL). WSDL is independent of any specific platform,
language or transport protocol. If a service is able to describe its interface through a WSDL
description it is possible to create remote service proxies automatically. Various software
companies, which implement software development environments, are working on solutions
which allow the easy development, deployment, and use of web services. Even companies
such as Macromedia, which develop software for the visual creation of web animations, rec-

4 The SiLiCon Context Framework 63

ognize the power of web services and include them into their frameworks. The most impor-
tant advantage of web services is the fact that all developers share the same description,
deployment, and execution standards. Therefore, it is possible to share a multitude of differ-
ent services between heterogeneous platforms and frameworks.

The integration of web services into the SiLiCon framework targets following aspects:

» Context Service Description: The description of context services using WSDL,
which allows clients to read and process context service interfaces. For develop-
ment environments such as Visual Studio .NET the integration of WSDL descrip-
tions of context attributes means that remote service proxies can be created
automatically.

* SOAP encoding of context events: The encoding and transport plugin architec-
ture of the SiLiCon framework allows the registration of new modules. Therefore a
SOAP encoding and decoding module could be integrated into the framework
without having to change the framework’s architecture. The SOAP encoding mod-

ule delivers context events as SOAP calls and thus offers context services to the
web service world.

« HTTP protocol integration: The integration of an HTTP protocol implementation
into the SiLiCon transport layer allows SOAP-encoded calls as well as WSDL
descriptions to be delivered over HTTP. SOAP calls can be bound to nearly every
high-level communication protocol such as TCP or SMTP. They can even be
bound to protocols that are offered by cell phones such as SMS or GPRS. How-
ever, most of the SOAP services are bound to HTTP.

* Mapping of third party web services into the SiLiCon framework: The last
aspect targets the use of third party web services within the SiLiCon framework.
Those web services can simulate context information sources that trigger context
events. To integrate third party web services into the framework it is necessary to
use a wrapper object as an attribute, that polls the web services for new values. If a
new value is detected the wrapper attribute triggers a context event.

The following sections describe the implementation of these four aspects.

Context Service Description. The dynamic context service description with WSDL is
mainly solved in the class WSDLBui | der , which does reflection on other classes, in order to
generate a WSDL description of their service interfaces. All of these classes are derived from
class CFAt t ri but e. The following section describes the generated WSDL information:

Web Services Description Language. A WSDL description separates the abstract func-
tionality of a service from its concrete implementation such as the transport protocols and the
location where that functionality is offered. The WSDL describes a service as a set of mes-
sages that are transmitted between the service client and the service provider. These messag-
es are not specifically bound to a concrete protocol, but are defined in a protocol-independent
format (most of the time XML schema definitions are used).

A WSDL description is divided into an abstract and a concrete part. The abstract part de-
scribes the service and its messages and the concrete part binds the abstract service to con-
crete protocol and encoding mechanisms. WSDL describes services as a set of network end
points, also called ports. The definition of ports and the definition of messages is separated

4 The SiLiCon Context Framework 64

to allow the reuse of messages in different services. A Port type represents an abstract col-
lection of operations. A binding maps concrete transport protocols and encodings to a par-
ticular port type.

The following list shows which kind of elements a WSDL description contains:

» Type element: contains data type definitions specified in a specific type system
such as XSD [XSD].

* Message element: holds the abstract definition of the messages which are sent and
received by a web service.

* Operation element: contains the abstract definition of an operation which the
service offers to a client.

» Port type element: contains an abstract set of operations supported by one or more
end points.

» Binding element: specifies a transport protocol and data format for a particular

port type.
» Port element: defines a single end point as a combination of a binding and a net-
work address.

» Service element: describes a web service as a collection of related ports.

The following sections describe these WSDL elements in more detail using a Hello World
web service as an example. The Hello World web service was implemented in C# and the
source looks like as follows:
public class ExampleService : System.Web.Services.WebService {
[WebMethod]

public string HelloWorld (string name) {
return "Hello, " + name;
}

}

Service element. This element specifies a set of ports that are grouped together by a service
name that has to be unique within the WSDL document. For the Hello World example it
could look as follows:

<service name="ExampleService">

<port name="ExampleServiceSoap" binding="s0:ExampleServiceSoap">
<soap:address location="http://localhost/ExampleWebService/ExampleService.asmx" />
</port>

</service>
The port element ExampleServiceSoap contains a binding extensibility element, which adds
protocol binding specific information to each WSDL element. The extensibility element
soap: addr ess specifies the SOAP protocol address for this port.

Extensibility elements contain additional information that are specific for certain proto-
cols and are not defined within the WSDL schema. In the example the protocol binding refers
to the SOAP protocol.

It is possible to specify more than one service element in a WSDL document as long as
the names of the services are unique.

Binding element. A binding element assigns a transport protocol and a message format to a
port type element. Since a WSDL description does not restrict the number and kinds of pro-

4 The SiLiCon Context Framework 65

tocol bindings it can contain a variable number of binding elements. The binding element
also contains a collection of operation elements, which specify operation names and their
messages. The mapping between operation and message is realized with the portType ele-
ment. The SOAP extensibility element specifies how the parameters of a SOAP call are en-
coded.
The Hello World service contains the following SOAP binding section:
<binding name="ExampleServiceSoap" type="s0:ExampleServiceSoap">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>
<operation name="HelloWorld">
<soap:operation soapAction="http://tempuri.org/HelloWorld" style="document"/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>
Port type element. The port type element describes for every operation which messages are
received by the service provider and which messages are sent back in response. The port type
element uses references to message element definitions, in order to specify the type of the
messages. For each operation, which the service offers, the port type element has to specify
the type of the input and output messages. For the Hello World example the port type defi-
nition looks as follows:
<portType name="ExampleServiceSoap">
<operation name="HelloWorld">
<input message="s0:HelloWorldSoapIn" />
<output message="s0:HelloWorldSoapOut" />
</operation>
</portType>
Message element. The message elements define the types of the input or output messages.
A message consists of one or more parts that describe the contents of a message according
to its binding. A message part has an associated type that is specified by a so-called message
typing attribute. There are two kinds of typing attributes: fype and element. A type attribute
refers to a simple or complex XSD type and an element attribute refers to an XSD element.
The following example shows the message elements for the HelloWorld service:
<message name="HelloWorldSoapIn">
<part name="parameters" element="s0:HelloWorld" />
</message>
<message name="HelloWorldSoapOut">
<part name="parameters" element="s0:HelloWorldResponse" />
</message>
This example shows that the SOAP-bound messages have an attribute called type which
specifies the type of the message. It refers to an XSD-defined element inside the types of this
service. The portType element specifies which messages are sent and received by an opera-

tion.

4 The SiLiCon Context Framework 66

Types element. The types element is used for defining all complex types that are used in the
WSDL description. If complex types are used as service parameters, this section is the most
complex part to generate and to parse. Since WSDL wants to be platform-independent, it
uses XSD as the type system standard. For the HelloWorld example two element types have
to be defined in the types element: Hel | owor | d and Hel | oWor | dResponse. The message
Hel | owor | d represents the input message and Hel | owor | dResponse defines the message
that is returned by the service:

<types>
<s:schema elementFormDefault="qualified" targetNamespace="http://tempuri.org/">

<s:element name="HelloWorld">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="name" type="s:string" />
</s:sequence>
</s:complexType>
</s:element>

<s:element name="HelloWorldResponse">
<s:complexType>
<s:sequence>
<s:element minOccurs="0"
maxOccurs="1"
name="HelloWorldResult"
type="s:string" />
</s:sequence>
</s:complexType>
</s:element>
</s:schema>
</types>

Generation of WSDL descriptions on mobile devices. The SiLiCon framework was de-
signed to run mainly on mobile platforms. Therefore it was necessary to use libraries that do
not use a lot of system resources and are able to run on a Java Virtual Machine which sup-
ports only the Personal Profile (which is comparable to the libraries of JDK 1.1.8). Common
Java web service development libraries such as Axis [AXIS] or glue [GLUE] are based on
XML parsing libraries that run on the Java Personal Profile but use a lot of system resources.

Therefore we decided to implement our own library for generating WSDL descriptions
from Java classes at run time. This library should be based on a fast and slim XML process-
ing library such as kXML [kXML].

The class &dlI Bui | der represents the main service description. The client is able to cre-
ate a new W&dl Bui | der object and to add new services to this object. The interface of the
class Wsdl Bui | der is defined as follows:

public class WsdIBuilder {

public WsdIBuilder(URL tns, Protocol[] ps); // sets the target namespace and a set of protocols
public WsdIBuilder(); / initializes with a SOAP protocol binding and a default namespace
public void addProtocol(Protocol p); // adds a protocol binding

public void insertNs(String nic, URL nsu); // inserts a namespace with a dedicated short name
public void addService(String sn, URL sadr, Class c, Method[] mds); // adds a new service

public XmINode getWsdl(); // returns the WSDL description as an XmINode object
public String toString(); // returns the WSDL description as a String object

4 The SiLiCon Context Framework 67

}

The Wsdl Bui | der constructor initializes the target namespace and a set of protocol bindings.
The empty constructor initializes the target namespace with a default value and with a SOAP
protocol binding. The interface Pr ot ocol defines methods for accessing the protocol infor-
mation that has to be written into extensibility elements of this protocol. A client is able to
inherit from the interface Pr ot ocol in order to create a new protocol binding. A new protocol
binding is registered at a W&dI Bui | der object by calling the addPr ot ocol method. After the
registration, the Wsdl Bui | der generates additional binding extensibility elements (in addi-
tion to <soap:...> e.g. <smtp:...>, <http:...>) for the new protocol.

To add a new service to the Wdl Bui | der object it is necessary to call the addSer vi ce
method, which takes parameters that contain the service name, the address, the service class,
and an array of methods. The array of methods specifies which methods should be described
as publicly available services in the WSDL description.

The SiLiCon framework automatically exports all public methods whose names begin
with the string “CF” (e.g. CFshowMessage). The delivery of WSDL descriptions is imple-
mented as an HTTP-GET response mechanism from the HTTP transport protocol module.
The worker process of the HTTP module is responsible for handling client requests and to
send back the result values over HTTP. According to some special features of the web serv-
ice technology, it was decided to enlarge the standard functionality of the HTTP module to
fulfil the following tasks:

» Receive and deliver context events according to the encoding module that is speci-
fied (which is a standard functionality of all transport modules). Context event data
can be received through the HTTP-POST or HTTP-GET method.

* Receive and deliver resource requests over HTTP-GET, which means that files
(e.g. images, XML or HTML) can be sent to a client. The client could be a web

browser that wants to receive documentation or pictures about the context entities
in human-readable form.

* Automatic generation of an HTML representation showing the structure of a con-
text container. The worker process is able to deliver an HTML representation of an
entity with its set of attributes.

* Automatic generation of a WSDL description which represents the public services
of a context attribute.

In the next sections these tasks are described by some concrete examples.

Delivery of resources over HTTP. If an HTTP request refers to a resource that can be found
in a directory of the context application and does not refer to an entity or an attribute path,
the HTTP worker process returns the resource to the client. This feature is used by the gen-
erated HTML description, in order to display images. The resource delivery is also useful for
offering information and documentation about the applications running on the device and
about the different context services that are offered. HTML pages offer the client the possi-
bility to refer to information which is written in a human-readable form, in contrast to a
WSDL description which is intended for being processed by a machine. For security reasons
this feature can be disabled or restricted to specific resources for single HTTP modules. Fig.
39 shows a web browser client which requests the resource about . ht mi from the registered

4 The SiLiCon Context Framework 68

HTTP receive module. The receive module accesses the context application directory, where
all startup configuration scripts are located and tries to find the resource about . ht m . As we
can see, the resource about . ht m is located in the specified application path and the HTTP
receive module delivers the resource to the client. The client displays the received resource
in its browser window.

Automatic generation of an HTML representation. When the client requests an HTTP
resource path that leads directly to a hosted entity or attribute, the HTTP receive module
shows detailed information about the requested object. The HTTP receive module was ex-
tended to automatically generate an HTML representation of entities and attributes. The
HTML representation includes a link to the WSDL description of the attribute and links to
navigate to the parent entity and to child attributes and entities. This navigation functionality
is useful for scenario designers to get an overview of the context container’s contents and
structure as well as a list of available services. To demonstrate the navigation through a con-
text container using the HTML representation, the sample SiLiCon application "VRML-
Browser’ is used, which is described in Chapter 6.1.
.-—-I"} VRML browser

HTTP receive
module
..@ about.html
REQUEST:

/context apps/VRML
container.xml browser/about.html

.r--/ context apps

RESPONSE:
/about.html

ol =l
T e B Wew o Bockmubs Jook Wiedow Helh

3 ®\£| @ | % it ncabarst BT i cmrien flaad b @ @ ©@|0

inventory.xml

¥, |,

Centext Appheation "VEML Erowser®

rules.eve

"‘:L:
% logo.jpg

,..—JI ... other application

Thie context appleation VEML Browser is responsible for controfing a VEML phagn, which i embeded inside a WebBrowser

QO @ toe s

Fig. 39 Web browser client requests resource about.html!

When the client requests the resource “http://address:port’'VNRMLBrowser“, the HTTP receive
module realizes that this path refers to an entity and generates an HTML representation that
is shown on the left in Fig. 40. The entity VRMLBr ower has a list of attributes on which the
scenario designer may click in order to navigate to the WSDL information of the selected
attribute. The HTTP receive module configuration needs a specific extensibility element,
called RootEntity, which holds the identifier of the entity that represents the root object for
the navigation tree.

4 The SiLiCon Context Framework 69

o]

- [[

Context Framework 2003 Context Framework 2003
HTTP Transpont IModule HTTP Trarsport Module

Context Entity: VrmIBrowser Afttribute: VrmlSenrver

Get WSOL!

i 0
¥ NmiBrowserControlRules % Q“'b
q\

o

>
S

MNrmiBrowserLocation

- |

9]
W NimiBrowserDynamicLoader

S

NimiBrowser/CF LookupComponer

>}

W _NmiBrowserTime
NimiBrowserVimlSenver

&) == @ = B S

° o

Fig. 40 Generated HTML representation of entity VRMLBr owser

Automatic generation of WSDL descriptions. Many web servers offer the feature to re-
turn the WSDL description of a web service over HTTP. To request such a description, one
has to specify the path of the web service and an empty WSDL parameter, for example:

“http://www.sampleurl.com/WebService.asmx?WSDL"

In the SiLiCon framework it is also possible to refer to the WSDL description of a context
attributes with the attribute’s URL. In order to specify that the HTTP receive module should
generate a WSDL description instead of showing the HTML representation of the attribute,
it is necessary to add the empty WSDL parameter. The HTTP receive module calls the meth-
od gener at eWsDLf or , which uses the class W dI Bui | der to translate all public methods that
begin with the string * CF into WSDL. Here is the implementation of gener at e WsDLf or :

protected String generateWSDLfor(CFAttribute a, String path) {
String adrStr = CFHttpReceiveModule.address+path.substring(0, path.indexOf("?"));
org.kwsdl.generate.WsdIBuilder wb = new org.kwsdl.generate.WsdIBuilder();
String wsdl ="";
/I only describe methods that start with the "CF" context event endpoint mark
Method[] mds = a.getClass().getMethods();
Vector v = new Vector();
for(int i=0;i<mds.length;i++)
if(mds[i].getName().startsWith("CF")) v.addElement(mdsi]);
Method[] tm = new Method|v.size()];
for(int i=0;i<v.size();i++)
tm[i] = (Method)v.elementAt(i);
try {
wb.addService(a.getldentifier(), new URL(adrStr), a.getClass(), tm);
wsdl = wb.toString();
} catch(MalformedURLException e) {
e.printStackTrace();
}

return wsdl;

}
The method gener at eWsDLf or takes the attribute that should be described as well as its re-
source path, in order to select all methods of the attribute’s class that begin with* CF' . After
the vector of methods has been copied into an array, the Wsdl Bui | der ’s method addSer vi ce

4 The SiLiCon Context Framework 70

is called to add the methods to the description. Finally, the method t oSt ri ng() is called,
which returns the WSDL description of the attribute as a string.

As an example, let us look at how Wsdl Bui | der generates a WSDL description for an at-
tribute of class Ti me. The Ti me attribute offers two service methods, which trigger events de-
pending on the local time. The method CFperi odi cTri gger takes a delay value and triggers
events periodically. The method CFti meTri gger takes an hour, minute, and second value
and triggers an event at the given time.

public class Time extends CFAttribute implements Runnable {

public void CFperiodicTrigger(long delay)
public void CFtimeTrigger(long hour, long min, long sec)

,
Both methods begin with the string’ CF' and are declared as public. Therefore only these two
methods are extracted by the gener at eWsDLf or method. To request the automatic descrip-
tion of the attribute Ti me in the entity VRMLBr owser one has to specify the following ULR:

http://www.sampleurl.com:port/VrmIBrowser/Time?WSDL

The generated WSDL description is visualized in Fig. 41. The interface of class Time offers
two public services periodicTrigger and timeTrigger. These services are descibed via WS-
DL. The WSDLBuilder automatically generates a service namespace s0 in which the servic-
es elements are defined. According to the fact that a service method inside a class can be
overloaded, the WSDLBuilder has to coose a unique name for each method. That is the rea-
son why the WSDLBuilder adds the class name and a unique number in front of the opera-
tions input and output names. In the example the resulting name is 0TimeCFperiodicTrigger:

Services
— Time
“ TimeSoap
Bindings PortTypes Operations
— TimeSoap TimeSoap — CFperiodicTrigger
CFperiodicTrigger Input: s0:0TimeCFperiodicTriggerSoapin

SR part: param0 s:long

Output: s0:0TimeCFperiodicTriggerSoapOut

Ou;F;L;thOdy CFtimeTrigger
- - i Input: s0:0TimeCFtimeTriggerSoapin
-------- CFtimeTrigger i part: param0 s:long
------------- Input : part: param1 s:long
,,,,,,,,,,,,, soap:Body part: param2 s:long
------- Output Output: s0:0TimeCFtimeTriggerSoapOut
Soap;Body

Fig. 41 Visualized WSDL description of the attribute 7Time

4 The SiLiCon Context Framework 71

4.5 Role-Based Classification with Attribute Templates

The classification of entities that suddenly appear in an environment is a major aspect of con-
text frameworks that are operating in highly dynamic networks. To identify an appearing en-
tity it is necessary to use a discovery mechanism, which was already described in Chapter
4.3. There are different ways how appearing entities can be identified as possible interaction
partners. A popular mechanism is the Person, Thing and Place classification model. This
kind of classification was first mentioned in the Cooltown project (see Chapter 3.4). A static
classification hierarchy, which has to be the same on all distributed devices, distinguishes
only between the three basic classes: Person, Thing and Place. The reason for this classifi-
cation schema was that it covers many possible real world situations and that it is simple.
Context information is traditionally bound to location information so this was the main rea-
son to distinguish between places and objects that are located in places. Humans are the users
of pervasive and context-aware scenarios. Therefore Cooltown distinguishes also between
objects and human users in form of the classes Thing and Person. For the sample scenarios
in Cooltown this classification schema is sufficient and easy to implement.

Other classification mechanisms, such as the one in Jini, use Java interface types to iden-
tify possible communication partners. The disadvantage of this technique is that only com-
munication partners can be considered, which are implemented in Java. For example, it is not
possible to implement a Jini service in Pascal, C, or C++. The Jini service provider must run
a Java Virtual Machine. This restriction reduces the number of possible communication part-
ners.

Role-based classification mechanism. The main problem in the classification of appearing
entities is to find out which attributes an object has. Describing objects and their relations to
each other is one of the major aspects of the RDF [RDF] standard. The RDF group and the
Semantic Web [seWeb] group was founded by the World Wide Web Consortium in cooper-
ation with mobile phone manufacturers like Nokia. The RDF standard was established to de-
scribe the attributes of mobile phones in order to give providers of mobile services the
possibility to customize their content automatically. The service provider checks the at-
tributes of a device and sends only such content that the device is able to understand. It does
not make sense to send color photos to mobile devices which can only display monochrome
text. Our research-like the RDF approach- shows that a universal and simple entity classifi-
cation mechanism improves the flexibility of mobile services and interaction scenarios. In
the SiLiCon project we distinguish between two object classification models:

1. Closed World Assumption: In this classification model the whole class hierarchy is
defined statically at design time. That means that all distributed devices have to use the
same static class hierarchy. Of course, this can lead to consistency problems. A change in
the class hierarchy affects all mobile devices and the applications running on them. If the
class hierarchy is simple, as it was the case in the Cooltown project, it is an effective and
efficient way to classify objects. However, most programming languages do not support
multiple inheritance, which means that an object cannot be classified both as a Person
and a Place. Fig. 42 shows how the classification mechanism in a closed world assump-

4 The SiLiCon Context Framework 72

tion would classify an object according to three classes Person, Thing and Place. An
object is classified by choosing a class where the object fits best.

class Person
A

semantic classification process

real world object x

» class Thing

class Place

Fig. 42 Semantic classification process in a closed world model

2. Open World Assumption: This classification model is completely open for changes in
the number of object types (roles). Data and services are not completely known at design
time. All the semantic information of the participants in a scenario have to be derived at
runtime. As a matter of fact, the classification of an object can even change at runtime.
An object is also able to act in more than one role. Fig. 43 shows how a role-based clas-
sification according to three attributes could be performed.

attribute is_in

real world object x

—» attribute moveable
Person

attribute contains

Fig. 43 Role-based classification in an open world model

Instead of classifying objects with a static class hierarchy at design time (as in Cooltown) the
SiLiCon framework tries to apply another classification mechanism: all entities are contain-
ers that can hold sets of attributes. The framework does not classify the entities by their types
but allows context-sensitive applications to identify entities according to the role that they
play. Roles are defined by the applications. The same entity could act in more than one role
for different applications. Is is possible to model scenarios in which an object acts as a thing
for one application and as a place for another application. To classify an entity means to
check which attributes the entity implements. It is clear that a classification process has to
rely on characteristics that are unique throughout the whole scenario. In the SiLiCon frame-
work these characteristics are not represented by the classes of the entities, as in Cooltown,
but by the service interface of their attributes. As it is already known from the web service
technology, a unique service namespace identifies the interface of an attribute. It is possible

4 The SiLiCon Context Framework 73

to exchange attributes at runtime, if they implement the same unique service namespace and
therefore the same interface.
The following section shows an example attribute template. A template has a name that has
to be unique within the context container. The name is used to refer to the role within a ECA
rule. An attribute like Name has an interface XML attribute which refers to a language and
platform independent interface description, e.g. a link to a WSDL description.
<?xm version="1.0" tns="http://silicon.org/tenplate"?>
<t enpl at e name="Pl ace">
<attribute name="Location" interface="silicon...Location"/>
<attribute name="Omner" interface="silicon...Omer"/>
<attribute nanme="Di splay" interface="silicon...D splay"/>
</tenpl at e>
<t enpl at e nane="Person">
<attribute nanme="Nane" interface="silicon...Name" />
<attribute name="Age" interface="silicon...Age" />

<attribute name="Soci al nunber"” interface="silicon...Social Nunber" />
</tenpl at e>

Unique service namespaces are used in the SiLiCon framework to identify specific sets of
attributes. These sets define in which role the entity acts at the moment of discovery. As it
was already mentioned in Chapter 4.3, the lookup module sends out role information, also
called attribute templates. In the SiLiCon framework the term ’template’ or ’attribute tem-
plate’ is defined as follows:

An attribute template specifies a set of service namespaces which an entity at least has
to offer, in order to act in a specific role.

The template manager module is responsible for loading a collection of attribute templates
at startup, but templates can also be registered at runtime. The template manager represents
a repository in which all locally known roles are registered. When a new context-sensitive
application is installed on a device it registers a set of roles. This set indirectly defines poten-
tial interaction partners, which the application would like to include in its scenario.

The class CFTenpl at e implements an attribute template (i.e. a role) and offers basic func-
tionality for working with the template:

* CFTenpl ate(String ident): Constructor of class CFTenpl at e which initializes
the template object with a given unique identifier.

* String get Name() : Returns the unique identifier of the template object (91).

* setAddress(URL adr): Sets the URL address where the template object is
located.

* URL getAddress(): Returns the URL address where the template object is
located.

* void addAttribute(String nic, String interface): Adds an attribute to
the collection of attributes that define the role.

* String[] getAttributelnterfaces(): Returns an array of unique identifiers
that identify the interfaces of the set of attributes.

* bool ean contai ns(CFTenpl at e t): Checks whether a given template is a subset
of this template.

4 The SiLiCon Context Framework 74

The method bool ean cont ai ns(CFTenpl ate t) checks whether the given template is a
subset of the receiver template. The class CFEntity offers a method called CFTenpl at e
get Cont ext Tenpl at e() , which returns the set of attributes that the entity offers. This set is
wrapped in a CFTenpl at e object, in order to be able to perform set operations with other tem-
plate objects. Set operations on templates can provide interesting results that can be used in
role modeling:

» Aggregation (4 B): The aggregation operation combines the attribute sets of two
templates. This resulting template acts in the role defined by template A as well as
in the role defined by template B. With the aggregation operation it is possible to
design multiple inheritance scenarios, for example, where an entity has to act in the
role of a Thing as well as in the role of a Place.

* Intersection (4 n B8): The intersection operation returns all attributes that are mem-
bers of template A and of template B. Therefore, the intersection calculates how
similar two templates or entities are with respect to their attribute sets.

» Difference (4-58): The difference operation returns all attributes that belong to
template A but do not belong to template B. 3-4 = @ means that the operation
A. cont ai ns(B) would return t r ue. The template A contains all attributes that the
template B defines and therefore the template A acts in the role of B.

Fig. 44 shows how an entity X is classified in our role-based model. The result of applying
the cont ai ns operation to the templates shows that the entity is acting in the role of a Pro-
Jjector and a Place but it does not act in the role of a Person.

template Projector {

Display
Owner J

Entity Room34: Location
template Room34 { }
Display
Print template Place {
Contain Contain
Owner Location
Location }
} template Person {
Name
Age x
Location
SSN
}

Fig. 44 Contains operations between attribute templates

4 The SiLiCon Context Framework 75

4.6 Interaction Scenarios Defined by ECA Rules

One of the requirements for the SiLiCon framework was to react on state changes in a flex-
ible way. By specifying how devices should react on environmental events one gets a pow-
erful way to control the behavior of entire scenarios. The idea was to use an abstract layer
between the sensor and the actuator modules, which are wrapped in SiLiCon attributes. The
scenario designer or even a user is able to react on state transitions that lead to a demanded
behavior in the environment. The scenario designer first has to identify all entities and at-
tributes that are relevant for a certain scenario. The digital description of entities and at-
tributes are then running on digital devices. At startup time every entity initializes its
attributes, whose initial values represent the initial state of the scenario.

The scenario designer is now able to specify a set of state transitions, in order to define
the state machine of a single entity. Fig. 45 shows a simple state machine for an entity which
could be running on a PDA. The entity contains attributes that collect information about the
weather, the stock values, the owner’s time schedule and so on. Some of the attributes offer
services to change the state of the environment, for example by sending an E-mail or SM'S
(Short Message Service on cellular phones) or by attracting the user’s attention with popups
on a display. Every entity has a repository of ECA rules which have the form:

ON event IF condition action;

If the event occurs and the condition yields true the specified action is performed. An action
can read the attributes of other entities and can call service methods on them. It can also trig-
ger new events on which this entity or other entities can react. The rule repository of every
entity can be modified at runtime. New rules can be added and existing rules can be deleted
or exchanged. Therefore the scenario designer can model the behavior of the entities in a very
flexible and dynamic way.

/y@splay.Alert(,,Rapid Stock Change") >
Stock changes

Entity X AND owner nearby
template {
Display Stock changes
Weather AND owner away ™ 5\S Message(,Rapid Stock Change“D
Stock
Owner
SMS
Mail

Organizer

rainy weather Display.Alert(,Umbrella!*)
} AND owner leaving

Fig. 45 Simple entity state machine.

In the SiLiCon framework an ECA rule is also called a context rule, because the rule is able
to react on situational changes. As a matter of fact, events are also called context events be-
cause they inform about changes in the environment. In this work an application that is able
to react on context events is called a context-aware application.

4 The SiLiCon Context Framework 76

4.6.1 Event Handling

In this section we describe context events and and how they are handled in the SiLiCon
framework. We will look at the contents of a context event, who triggers it, how it is trans-
parently sent over the network as well as how the event queue and the interpreter process
events.

Content of context events. A context event carries information about state changes in the
SiLiCon framework. This information is transferred between distributed attributes and enti-
ties and consists of the following parts:

» Event name: It specifies which event was triggered by an attribute. Therefore, the
event name has to be unique within a specific type of attribute. Two different
attributes can use the same event name with a different semantics.

» Event parameters: The parameters are a list of identifier/value pairs that specify
additional event information. Their order is important because they are used to
map an event to a certain rule or to a method (if no rule is present).

» Source entity: It specifies the event source object (represented by an object of type
CFEnt i t y) where the event was originally triggered.

* Source attribute: 1t specifies which attribute in the source entity triggered the
event.

» Destination entity: It specifies to which entity the event should be delivered.

* Destination attribute: 1t specifies to which attribute in the destination entity the
event should be delivered.

» IsSync: This property specifies whether the context event should be delivered syn-
chronously or asynchronously.

The destination entity and the destination attribute are optional due to the fact that it is pos-
sible to trigger events that are not directly addressed. By specifying a destination entity and
a destination attribute an event is directly sent to a specific event listener. Context events are
represented by the class CFEvent in the SiLiCon framework.

Context event sources . There are various ways how events can be triggered and how they
can be routed to a receiver. One possibility is that an event is triggered by an attribute when
the state of this attribute changes. These events are not addressed, that means that the at-
tribute does not fill in the event destination (i.e. the destination entity and the destination at-
tribute). Such events are delivered to the entity that owns the triggering attribute informing
it about a state change in its attributes. This entity can then send the event to another desti-
nation by firing a context rule. The action in the context rule can find out which entities are
interested in the event by finding entities that match a certain attribute template and can del-
egate the event to them.

On the other hand, the scenario designer is able to directly address events to a destination
entity or to a group of destination entities. In this case the destination attribute and destination
entity information is filled into the event object and the event is added to the event queue of

4 The SiLiCon Context Framework 77

the sending entity. The queue is then responsible for delivering the event to the specified des-
tination by using the lookup and transport module. If the destination entity is not known or
currently not reachable, the event queue triggers an error event that is processed like any oth-
er event. This is descibed in Chapter 4.6.3. It is also possible for attributes to trigger directly
adressed events, but this option is quite inflexible and therefore not often used by attributes.

Processing of context events . The framework itself is also able to trigger context events
containing information that might be interesting for entities. Generally, the implementation
distinguishes between two event sources, which are completely transparent to the context
scenario designer:

1. Local event sources: A event source is considered as local when the entity, which trig-
gered the event, is managed by the same container as the destination entity. Therefore,
the framework is able to just hand over the event to the entity.

2. Remote event sources: A event source is considered as remote when the entity, which
triggered the event, is not managed by the same container as the destination entity. The
transport layer receives the event from the network and passes it to the event queue
which is registered at the context container.

For the scenario designer delivery of events to remote receivers happens transparently. For
a context rule the receiver of an event is transparent. Events are delivered by the event queue
of which there is exactly one in every context container. The event queue has a reference to
the lookup module on the same host, which allows it to distinguish between local event re-
ceivers and remote event receivers. The delivery of events happens in the following steps:

» An attribute of an entity triggers an event and puts it into the entity’s event queue.

» The event queue decides whether the receivers of the event are located on the local
host or on a remote host.

 If the receiver is on the same host as the sender the event queue passes the event
directly to the rule interpreter of the destination entity.

» For remote receivers the event queue passes the event to a suitable transport mod-
ule, which is the one that has a compatible receiving transport module at the
remote host.

* The transport module encodes the event using an encoding mechanism for which
there has to be a compatible decoding mechanism at the receiving container. After
the event has been encoded, it is sent to the remote container.

» The transport module of the remote container receives the event, decodes it and
puts it into its own event queue.

» The event queue of the remote container delivers the received event to the destina-
tion entity.

The event queue passes events to the interpreter of the destination entity which is registered
as an event listener. If there are one or more context rules for this event, the interpreter exe-
cutes the rule(s) with the matching event parameters. If there is no context rule for this event,

4 The SiLiCon Context Framework 78

the interpreter tries to find public service method, where it can pass the event to the destina-
tion attribute. The name and the parameter list of the event specify the name and parameter
list of the attribute’s method. To distinguish between normal methods and methods which
are offered as an event end point, it was decided to use 'CF’ as a prefix for the method name.
The prefix is not necessary when the event is triggered. When an event is triggered inside an
event rule the event name without the *CF’ prefix is used. Every service method which be-
gins with CF can receive events. Another possibility to deliver events is to synchronously
send them. The difference between synchronous and asynchronous method calls is that a
asynchronous call returns the result through triggering a new event. In order to send a syn-
chronous event and to immediately receive the result, it is possible to pass the event to the
event queue by calling the method CFEvent del i ver Event Sync(CFEvent ev). Fig. 46
shows an event queue that delivers an event to an entity. The event is called TagAppeared
(this is an event which an RFID reader attribute triggers when an RFID transponder comes
into sensing range). The event has one parameter of type St ri ng which identifies the ID of
the RFID transponder that appeared. The event is passed to the interpreter of the destination
entity by calling its method CFEvent [] processEvent (CFEvent ev). This method tries to
process the event and returns a vector of outgoing events that were triggered by processing
the incoming event. The outgoing events are also put into the senders event queue and proc-
essed as normal events.

CFEventQueue CFEntity

CFEvent: CFEvent][] processEvent(CFEvent ev)
Name: TagAppeared CFInterpreter

ParamO: String: ID

CFAttribute

CFTagAppeared(String id)
call end point CFTagDisappeared(String id)
start()

stop()

Fig. 46 Processing of events delivered by the event queue

As Fig. 47 shows, the interpreter searches its rule repository for a rule with a matching sig-
nature that can handle the incoming event. If such a rule is found, it is processed by the in-
terpreter. Otherwise, the interpreter tries to find a direct end point within the destination
attribute. If a direct end point is found (e.g. the method CFTagAppear ed in Fig. 47), the in-
terpreter calls this method and passes it the parameters of the context event.

4 The SiLiCon Context Framework 79

CFEntity
CFInterpreter

CFEvent:
Name: TagAppeared ———» CFEvent[] processEvent(CFEvent ev)
ParamO: String: ID

. call rule

Rule: TagAppeared &
Param0: String ID

Condition

Action

Rule: TagDisappeared
ParamO: String ID

Condition

Action

CFAttribute

if no rule is found,
CFTagAppeared(String id) try to call
CFTagDisappeared(String id) 4 .
start() direct end point
stop()

Fig. 47 Interpreter processes incoming context event

4.6.2 Syntax and Semantics of SiLiCon Context Rules

In similar projects ECA rules are often represented in XML. In the SiLiCon framework, how-
ever, we decided to define our own rule syntax, in order to create a more compact and read-
able format for context rules. XML has the disadvantage that it is rather verbous and contains
redundant information. Because SiLiCon rules have a compact format, it is possible to send
them over the network within small packages. For example, this is important in scenarios
where rules are designed and sent from a cellular phone as an SMS (Short Message Service)
message.

A typical SiLiCon context rule consists of three blocks which are: an event-catching dec-
laration block, constraints and an action block.

In this section the syntax and semantic of the different parts of context rules are explained
in detail. The simplified syntax of the different parts is specified in EBNF [EBNF].

Rule repository. Following grammar defines the syntax of a SiLiCon rule repository. A SiL-
iCon interpreter is able to parse a rule repository in order to load new rules.

RuleRepository = {RuleGroup}.

RuleGroup = "rules" [ForClause] "{" {Rule} "}".
ForClause = "for" Entity {"," Entity}.

Entity = ident | RoleTemplate.

Rule = EventHandler | VarDecl.

RoleTemplate = “<* ident “>”.

VarDecl = Type ident { “,” ident } “;”

Type = “long” | “double” | “boolean” | “string” “;”.

A rule repository contains a variable number of rule groups. A rule group is introduced by
the symbol ’rules’ and an optional For Cl ause, which should not be confused with the for
loop in programming languages. The For C ause within a rule group specifies to which en-
tities the grouped rules and global variables should apply to. If no For Ol ause is given the

4 The SiLiCon Context Framework 80

interpreter identifies all rules and global variables inside the group as relevant for its entity.
If a For d ause is given, the interpreter starts to identify the list of entities for which the rule
group is relevant. An entity is represented through an i dent or through a Rol eTenpl at e
which specifies a family of entities. If the entity’s name is equals one of the idents in the For -
d ause, or the entity is acting in one of the given roles, the interpreter loads all the rules from
the rule group.

In the case that the For O ause does not match the entity, the interpreter ignores the rule
group and continues to parse the next RuleGroup.

Following example shows a rule repository which is relevant for the entity Loox and iPAQ
only, according to the specified For C ause:

rules for Loox, iPAQ{ ... }

The next example shows a rule group which is relevant for entities that act in the role of a
PDA and for the entity AcerLaptop only:

rules for AcerLaptop, <PDA>{ ... }

Inside a rule group it is possible to specify event rule declarations, which are explained in the
next section, and global variable declarations. Global variables, specified through the non-
terminal symbol Var Decl , contain values that are accessible through all rules inside an inter-
preters rule repository. Following example shows how global variables can be declared in a
rule group.

rules for Loox {
long hg, mg, sg;
}

Event rules. Event rules are declared inside a RuleGroup. An event rule declaration defines
on which event the interpreter should react. Following grammar shows the syntax of an event
rule declaration:

Rule = “on” AttrName “.” EventName “(“ [FormalParams] “)” Statement.

AttrName = ident.

EventName = ident.

FormalParams = FormalPar {*,” FormalPar}.
FormalPar = Type ident | Expr.

An event rule declaration always starts with the symbol *on’ followed by At t r Nanme which
represents the name of the event receiver attribute and the name of the event: Event Nane. An
event rule declaration contains an optional list of formal parameter declarations: For mal Par -
ans. A formal parameter declaration, which is represented through the non-terminal symbol
For mal Par, is a variable declaration or an expression. Formal variable declarations are used
to access the parameters the incoming event contains. The interpreter activates the rule if the
receiver attribute name matches the At t r Nare, the event name matches the Event Nanme and
the list of event parameter types matches the formal variable types. Otherwise the rule dec-
laration is not activated and the interpreter checks the next rule in its repository. It is impor-
tant that if more than one event declaration match the incoming event, the interpreter
activates all of them.

4 The SiLiCon Context Framework 81

Here is an example for an event rule declaration with a list of formal variable declarations.
The rule is activated if an incoming Al ar mevent has a receiver attribute Ti me and a list of
three parameters of type | ong:

rules {

on Time.Alarm(long h, long m, long s);

}
As it was already mentioned above, an expression or a constant can replace a formal variable
declaration in a rule declaration. An expression or a constant represents a shortcut for a rule
contraint. The interpreter takes the constant or evaluates the expression and compares the re-
sult with the parameter value of the incoming event. If the values are equal, the interpreter
activates the rule otherwise it ignores the rule.
Following example shows an event rule definition which uses a constant and an expression
in order to shortcut rule constraints. The interpreter activates the rule only if the first event
parameter has the value 24 and the second has the value 6:

rules {

on Time.Alarm(24, 1 + 2 + 3, long s);

}
Statements. This section explains which statements can be used within an event declaration
block. Following grammar shows the syntax of a statement and statement sequences:

Statement = (ident “=” Expr %"

| “if” “(* Expr “)” Statement [“else” Statement]

| EventOrCall “;”
| StatSeq

)-

StatSeq = “{* { Statement | VarDecl } “}".

A statement can be an assignment, an if statement, an event trigger operation, a method call
or a sequence of such statements. The event trigger and method call operation, which is rep-
resented by the non-terminal symbol EventOrCall, is explained in a later section.

Assignments are possible to global variables and to local variables, which were defined
inside the rule definition. Local variables are used to calculate intermediate result and to pass
these values to method calls or to event trigger operations.

If statements use expressions to realize rule constraints. Expressions which are used as
constraints in an if statement have to return values of type boolean. Otherwise a syntax error
is thrown. Expressions are explained in the next section.

Sequences of statements, represented through the non-terminal symbol StatSeq, contain
local variable declarations and statements. Local variable declarations are syntactically equal
to global variable declarations.

Expressions. Following grammar shows the syntax of expressions inside event rules:

Expr = Term { (“+" | “" | “||") Term}.
Term = Factor { (*” | */" | “&&) Factor}.
Factor = [+" | *-” | “I"] Primary.

Primary = ident | constant | “(“ Expr “)” | EventOrCall.

The types of each operator depends on the different operations that are possible. The opera-
tions +, -, * and / are possible for operands of all available primitive types. The unary oper-

4 The SiLiCon Context Framework 82

ation - is valid for the types | ong and doubl e. The unary operation ! and the logic operations
&& and || are only valid for boolean types.

Triggering events and calling methods. The non-terminal symbol EventOrCall, which was
introduced in the section dealing with statements, represents the operation for triggering new
events and calling the service methods of attributes. Following grammar shows the syntax of
the non-terminal symbol EventOrCall:

EventOrCall = [Receiver “.”] Attribute “.” Event “(“ [ActualParams] “)”.

Receiver = Entity | RoleTemplate.

Entity = [*$”] ident.

Attribute = [*$”] ident.

Event = [“$"] ident.

ActualParams = Expr { “,” Expr }.
The EventOrCall operation is able either to call a method or to trigger a new context event,
depending on the context in which the operation is called. The optional Recei ver specifies
the receiving entity while the Attribute specifies the receiving attributes service namespace in
which the event name has to be unique. If no receiver is specified, the operation takes the
containing entity as the receiver. The Event specifies the name of the event which is triggered
or the name of the method to call, followed by an optional list of parameters.
Following example shows how a new event is triggered inside an event rule. A new event is
created and sent to the entity Loox. The receiving attribute is specified through At t r Name
and the event name is NewEvent :

rules {

on Time.Alarm(long h, long m, long s) {
Loox.AttrName.NewEvent();
}

}

At the receiving entity this new event can be handled by defining one or more rules with the
specific attribute and event name:
rules for Loox { // rule repository of the receiving entity

on AttrName.NewEvent() {
// reaction on the incoming event
}

}

If the receiving entity (Loox) does not define any rule to handle the NewEvent , its interpreter
tries to find an attribute service method which has the same name as the event and where the
parameter list matches. If such an attribute service method exists, the interpreter calls the
method.

An EventOrCall which is located within the contraint expression of an if statement is always
interpreted as a synchronous method call where the result is immediately retruned to the call-
er. Following example shows an EventOrCall within the contraint of an if statement:

rules {

on Time.Alarm(long h, long m, long s) {
if(Time.GetSeconds() ==s) { ... }

}
}

4 The SiLiCon Context Framework 83

Also EventOrCall that are part of an assignment have to be interpreted as synchronous method
calls with immediate return of the result. Following example shows an EventOrCall in an as-
signment statement:

rules {

on Time.Alarm(long h, long m, long s) {
long seconds = Time.GetSeconds();
}

}

Ifani dent is preceded by a “$” this denotes the variable whose name is stored in the variable
with the name i dent . This indirection is necessary for triggering events with variable desti-
nations at runtime. The following example shows how this indirection can be used to specify
at runtime where the response event should be sent to. The entity PDA listens to events that
are triggered by the attribute Lookup in order to find entities that act in the role of a beamer.
When such an entity is found, the PDA stores the beamer’s name in a global variable called
bEntity. The expression a actsAs b is a shortcut for a. cont ai ns(b) and checks if the
entity a acts in the role . Every time a user notification event was triggered, the notification
message is sent to the most recently found beamer:

rules for PDA {
string bEntity = ““; // next beamer entity which enables a rich output possibility

// when the lookup attribute triggers an EntityAppeared event we check if a Beamer was found
on Lookup.EntityAppeared(string entity) {
if (entity actsAs <Beamer>)
bEntity = entity;
}

/l when a user notification event was triggered we send it to a Beamer device
on Notification.UserNotify(string msg) {
if (bEntity !1="")
// indirection enables dynamic event destinations at runtime
$bEntity.Display.ShowMessageBox(msg); // trigger ShowMessageBox event

}
}

Indirection can also be used for specifying the attribute and the event name, as it is shown in
the following example:

$entityVar.$attrVar.$eventVar(/* parameters */);

Triggering multicast events. Instead of an entity the programmer can also specify a Role-
Template denoting all entities which act in this role. This allows the specification of multicast
event destinations. Multicasts are only performed as asynchronous event trigger operations.
There exist no multicast method calls. The previous example could be changed so that all
available beamers get notification messages:
rules for PDA {
/ when a user notification event was triggered we send it to all available Beamer devices

on Notification.UserNotify(string msg) {
<Beamer>.Display.ShowMessageBox(msg);
}

}

4 The SiLiCon Context Framework 84

Fig. 48 shows how the event User Not i f y is caught by a context rule and how it is sent to a
multicast destination. The event is sent to all entities that act in the role of a beamer.

Display.MessageBox(string msg)

‘ Entity ,Beamer01'

Entity ,.Beamer02'

<Beamer>.Display.ShowMessageBox(msg) e eBWalo] ‘
> ntity ,WebWall01'

Entity ,WebWall02'

Entity ,Television01'

XML
attribute
template
,Beamer’

Fig. 48 Specification of multicast event destinations

4.6.3 Error Handling within Context Rules

If context events are processed in a dynamically changing network environment a number of
runtime errors can occur. Entities are likely to disappear from a scenario and lookup leases
can expire due to wireless network latency. The dynamic change of the network configura-
tion is not the only possible source of errors. Changing attribute templates, dynamic loading
or unloading of attributes and context rules, as well as entity migration between context con-
tainers could lead to unexpected runtime errors.

To react on known kinds of runtime errors the interpreter of the SiLiCon framework has
to offer a mechanism for realizing problems and for defining actions in response to them.

An important aspect of error handling mechanisms is the possibility to separate error han-
dling code from normal code. To meet this requirement and to design an error handling
mechanism that fits into the architecture of the SiLiCon framework, an event-based error
handling mechanism was defined.

Statements in a context rule can throw an | nt er pr et er Except i on when a runtime prob-
lem occurs. The I nt er pret er Except i on contains information about the problem, namely
an error identifier and a set of parameters. When an | nt er pr et er Except i on is thrown, the
interpreter stops the execution of the context rule, catches this exception and maps it to a con-
text event. The error identifier is mapped to the event name and the error parameters are cop-
ied into the event’s parameter list. After the new event was created, the interpreter processes
this event before it handles other events that are waiting in the event queue.

A scenario designer can therefore specify error handling code in a context rule that catches
the error event. The following code is taken from the Java implementation of the interpreter
and shows how an error event is used to catch a runtime error. If the lookup module does not
find the event’s destination entity it throws an InterpreterException which triggers a Desti-
nationEntityNotFound event at the current source entity:

if (lookup.getEntity(destEntity) != null) {
if (lookup.isLocalEntity(destEntity)) {

4 The SiLiCon Context Framework 85

((CFEntity)lookup.getEntity(destEntity)).processEvent(ev);

} else {// send to remote context container
CFSendModulelnterface sendMod =
lookup.chooseSendModule(ev.getDestinationEntity().getldentifier());
if (sendMod != null) sendMod.sendAsync(ev);

}

} else { // lookup cannot find the destination entity, throw an InterpreterException

Object[] params = new Object[1];

params[0] = destEntity;

throw new InterpreterException(
ev.getSourceEntity().getldentifier(),
ev.getSourceAttribute().getldentifier(),
"DestinationEntityNotFound",
params);

}

The next code fragment shows how an | nt er pr et er Except i on is mapped into a new con-
text event. The interpreter catches the | nt er pr et er Except i on, creates a new context event
and fills it with the error information. The parameters of the | nt er pr et er Except i on, which
was triggered by a Java program (or a program in some other language), are mapped to SiL-
iCon data types. The class CFPar anet er offers a static method w apQbj ect (obj ect 0)

which maps an object from the actual Programming environment (e.g. Java) to a SiLiCon
type (if this is possible) and returns an instance of class CFPar anet er . The resulting list of
CFPar anet er s is forwarded to the constructor of class CFEvent . The new CFEvent is then
sent to the source entity which triggered the error:

try {
deliverEvent(ev);

} catch(InterpreterException e) {
CFCommand cmd = new CFCommand(e.getErrorldent());
Object[] params = e.getErrorParams();
for (inti = 0; i < params.length; i++) {
CFParameter eP = CFParameter.wrapObject(paramsi]);
cmd.addParameter(eP);
}
CFEntity entity = lookup.getEntity(e.getSourceEntity());
CFEvent eEv = new CFEvent(entity, entity.getAttributeByName(e.getSourceAttribute()), cmd);
((CFEntity)lookup.getEntity(eEv.getSourceEntity().getldentifier())).processEvent(eEv);

}
The scenario designer can now specify the error handling code in a specific context rule that
resides in the entity which caused the error. The following rules show how to handle the Des-
tinationEntityNotFound event. The first rule triggers the event EntityX. AWTDialog.Show. If
EntityX is not found the interpreter triggers an error event which can then be handled by the
original event source (the entity TestErrorHandling):

rules for TestErrorHandling {

on Time.PeriodicTriggerEvent() {
trigger EntityX.AWTDialog.Show("Hello World");

[l error handling rule

on Time.DestinationEntityNotFound(string EntityX) {
/I error handling code goes here
AWTDialog.Show("EntityX was not found!");

}
}

4 The SiLiCon Context Framework 86

The advantage of this kind of error handling is the possibility to supply error handling code
at runtime over the network using the same event mechanism as for normal rules. It is even
possible to insert, remove or disable context rules in response of a runtime error. According
to the requirements of the SiLiCon project this mechanism provides a flexible solution to
context-aware error handling. The scenario has the possibility to change error handling pol-
icies according to situational changes.

The separation of error handling code from the normal code, which implements a specific
distributed scenario, is also solved with this mechanism.

4.6.4 Runtime Deployment of Context Rules

Designing context-aware applications or scenarios in highly dynamic network environments
requires that the middleware has to support configuration changes at runtime. To react on
changes in the network environment, it is necessary that the state transitions—and therefore
the rule repository—are changeable. As the SiLiCon framework is based on interpreters that
execute context rules, one can define an interface for modifying the rule repository at runt-
ime. This should even be possible using any kind of transport module that is registered at the
context container.

To change the rule repository of each entity that is reachable over a network connection
means that a scenario designer is able to stop, redesign, deploy and restart a distributed ap-
plication without any major effort. The remote development and distribution dramatically
simplifies the development and testing of distributed context-aware applications.

Controlling the rule repository with an attribute. The remote development and deploy-
ment of context rules poses a security problem for context-aware scenarios. For this reason,
the SiLiCon framework allows access to the rule repository and the interpreter only via a spe-
cific attribute. If an entity does not load this attribute, its rule repository and its interpreter
cannot be accessed. By unloading these attributes after the test phase one can disable the
modification of the rule repository.

In the SiLiCon framework, the attribute RuleRepository provides the public interface for
changing the rule repository of an entity. It has all the advantages of standard SiLiCon at-
tributes such as:

[t can be loaded and unloaded at runtime.
It can be accessed via all transport modules that are registered in the context con-
tainer.

It can react to context events, for example, by adding or removing context rules in
response to an event.

» Other rules can access it by triggering events that are handled by the RuleReposi-
tory attribute.

Fig. 49 shows a typical entity with the two attributes, LookupAttribute and RuleRepository,
that are loaded by default.

4 The SiLiCon Context Framework 87

context container

entity “PDA*

interpreter

attributes:

RuleRepository

Lookup

Fig. 49 Entity PDA with the attributes Lookup and RuleRepository

The RuleRepository attribute offers a method Xm Tag CFget Rul el nf o(), which returns all
rules of the repository in XML format. The method CFset Val i d(String event, bool ean
val i d) enables or disables all rules which handle the event that is described by the first pa-
rameter. If the flag valid is true the rules are enabled otherwise disabled. This method is use-
ful for debugging and testing, when the scenario designer does not want to delete a rule, but
just to disable it. Furthermore, it is can also be useful to disable or enable rules from action
blocks of other rules, which is shown in the following example:

rules {

/I a rule that reacts on alarm events

on Time.Alarm(long h, long m, long s) {
RuleRepository.setValid(“Notification.UserNotify“, false); // disable a event rule

}

/I a rule that reacts on user notifications

on Notification.UserNotify(string msg) {
.. I/ some notification action

}

}

To count the number of rules in a repository, RuleRepository offers the function CFcoun-
t Rul es() . The method CFcl ear Rul es() can be used to reset a rule repository, i.e. to delete
all its rules and global variables. There are two possibilities for adding new rules and global
variables to a rule repository:

» Asynchronously: The inserting entity sends an asynchronous event with the new
rule definitions to the RuleRepository attribute, which adds them to the repository
and sends back a status event. If the rules contain syntax errors they are reported
with the status event. The method which adds new rules asynchronously is: CFad-
dRul esAsync(String fromEntity, String rules).

* Synchronously: To add new rule definitions synchronously one has to call the
method String CFaddRul esSync(String fromeEntity, String rules). This
method inserts the rules and returns the status immediately back to the caller. The

4 The SiLiCon Context Framework 88

contents of the returned status is the same as the event contents that the asynchro-
nous mechanism sends back to the caller.

When RuleRepository adds new rules it has to check that they do not corrupt the existing re-
pository (e.g. by syntax errors). Before the repository is changed, the interpreter is suspended
and the repository is saved. Then the new rules are parsed and inserted into a copy of the re-
pository. If this succeeds, the interpreter resumes. If it fails, the old repository is restored be-
fore the interpreter resumes.

The method bool ean CFrenpveRul e(String event) can be used to remove all rules
that react on the specified event from the repository.

The SiLiCon visual tool support. The development of distributed scenarios that run on a
multitude of platforms and devices is a complex and time-consuming task. The SiLiCon
framework offers some basic concepts for the remote development of such scenarios. For ex-
ample, it supports the dynamic loading of attributes. The scenario designer can deploy new
attributes over the network and can thus change the role of an entity. Another important con-
cept is the deployment of rule definitions over the network in order to change the behavior
of an entity.

Since all relevant information, such as the lookup information and the attribute template
information, is sent in XML form, the framework offers the possibility to implement a visual
builder tool for the development of distributed scenarios. Chapter 4.1.6 introduced XML
configuration files for defining the startup configuration of context containers. With a visual
builder tool one can configure the contents of a context container and its behavior and deploy
this configuration over the network to any available device where this container should be
running. A visual builder tool could dramatically simplify the development of distributed
context-aware scenarios.

4.7 HTTP Logging Module

During the development of the SiLiCon framework we discovered some problems in debug-
ging a distributed application, which is running on embedded and mobile devices. One of the
major problems is the lack of output possibilities on embedded and even on mobile devices.
Most embedded devices do not offer any displays and the displays on mobile devices are too
small to view full exception stack traces. So the idea was to display the error information on
a remote device. In order to be able to deliver error information also through firewalls we
developed an HTML web logging module that uses port 80 (which is normally free for web
surfing). An HTML over HTTP logging module has the following advantages:

 HTML output can beformatted nicely using lists, tables, different fonts, font sizes
and colors.

* HTML output can be received and viewed on any device that has a web browser
installed.

* Most firewalls permit HTTP transport through port 80, so the error information can
be viewed even in a network that is guarded by a firewall.

4 The SiLiCon Context Framework 89

The logging module in the SiLiCon framework is a static module that can be enabled or dis-
abled in the context container configuration. The following configuration section shows how
to do that:

<Container Title="PDA_Container_01">
<Logging Type="http" Port="8080" LogStdOut="No" LogStdErr="Yes"/>

The Port attribute defines which port should be used to provide the error information at runt-
ime. The LogStdOut attribute specifies whether the standard output, which normally is
shown on the console, should also be put on the specified medium. Exceptions would there-
fore also appear on the specified medium. The LogStdErr attribute specifies whether system
exceptions (such as NullPointerException) should also be logged.

The Type attribute of the Logging element supports the following values, which control
the kind of logging activities:

« HTTP: Type HTTP enables the delivery of logging information over the HTTP
protocol using HTML format.

* Console: Type Console enables the delivery of logging information using the sys-
tem console.

 File: Type File enables the delivery of logging information using a file, where all
the information is stored.

The class Log provides the following three methods for printing out logging information,
where the output goes to the medium which was specified in the container’s configuration:
class Log {
public static void info(Object src, String msg);

public static void error(Object src, String msg);
public static void warning(Object src, String msg);

}

The output methods take two parameters: the object that called the method and a debug mes-
sage that should be printed. Fig. 50 shows a sample output:

4 The SiLiCon Context Framework 90

¥ LooxInertia - Context Framework logging facility - Mozilla =10l =
Y Fle Edt View Go Bookmarks Tooks MWindow Help

i @ |'~.— hittp:flocahost: 6080/ @] @ @®0
Y Qrome PBockmarks @ Google G Wireless Netw... Bmsgazines

LooxInertia
Debugging all packages

Tue Dec 09 10:52:07 CET 2003
class jav util Hashishle

Tue Det 09 10:52:07 CET 2003
class uni linz context framework. transport BMLookup
Lookup initializing.....
Broadcast Lookup started (1)...

Tue Dec 09 10:52:08 CET 2003
class wni hinz context k. transport CFB R
Broadcast receiver started on:140.78.145.43

Tue Dec 09 10:52:08 CET 2003
class uni linz context framework transport CFBrosdesstotilier
Broadcast notifier started on: beeracer/140.78.145.43

Tue Dec 09 10:52:14 CET 2003
clase uni ling context framework traneport CFEventCuse
Deliver Async CFEvent{{0) LooxInertia(*).Time -> --- - = LooxInertia("). Time:Periodic TriggerEvent())

Tue Dec 0% 10:52:14 CET 2003
class uni linz context attrbates time Time

Tug Dec 09 10:52:21 CET 2003
class uni iz context framework. transport CFEventQueis
Deliver Async CFEvent{(0) LooxInertia(*).Time -= - - = LooxInertia(*). Time:Periodic TriggerEvent())

Tue Dec 09 10:52:21 CET 2003
class uni line context attrbutes time Time

© @ o e w

Fig. 50 HTML output generated by the HTTP logging module

By default, error messages of all SiLiCon Java packages are visualized and formatted with
HTML. The heading of the logging page shows the name of the context container (LooxIn-
ertia) and which packages are visualized. In Fig. 50 all packages are visualized (debugging
all packages), which means that no package filter was set. Every debug message consists of
a line with the date and time, a line with the type name of the source object and a line with
the actual message. An information message appears in green, a warning in orange and a crit-
ical error in red.

The logging module stores a limited number of debug messages. If this number is reached,
the oldest message is deleted to create space for the new one. Since there can be lots of debug
messages the logging module implements a package filter mechanism. The package filter
mechanism is responsible for filtering messages which are specified by the scenario design-
er. The HTTP parameter ’package’ can be used to specify which debug messages should be
visualized. It can be set to a full type name (e.g. package=uni.linz.context.at-
tributes.tine. Tine) or to a substring that has to be part of the class name (e.g. pack-
age=Ti ne). Fig. 51 shows how the scenario designer is able to filter the debug messages by
setting the package parameter to BMLookup:

4 The SiLiCon Context Framework

91

=10 x|

1 LooxInertia - Context Framework logging facilitiy - Mozilla

Y ple Edt View Go Bookmarks Tooks Window Heb o
@@ @ = T @J@@@O

T Qivome PyBockmerks @Google L Wreless Netw... Pimagacines

LooxInertia
Debugging following package: BMLookup

Tue Dec 09 10:52:07 CET 2003
class uni linz context framework transport BMLookup
Lookup initializing.....

Broadcast Lookup started (1)...

=

© & o~
Fig. 51 HTTP parameter ’package’ set to BMLookup in order to filter the debug messages

5 Comparison 92

5 Comparison

This chapter gives an overview of the features of various frameworks that support the design
of context-aware software. It also points out their advantages and disadvantages in relation
to the SiLiCon framework as well as their design goals. Some interesting comparison aspects
were taken from [HeO1]. It should be mentioned, that the application domains of the different
frameworks overlap but do not exactly match all aspects. Jini, for example, was designed to
operate as a dynamic service platform, whereas the Context Toolkit was designed as a com-
plete pervasive computing environment. The feature sets of both frameworks overlap, but
every framework offers more or less specific features according to their original design
goals.

5.1 Classification of Context-Aware Software

Context-aware software can be divided into three main classes: stand alone applications,
context-aware service platforms and context-aware pervasive environments.

» Stand alone context-aware applications: This class of context-aware software is
the most commonly used. Such applications perform specific sensorial tasks such
as the authentication of users, object tracking in logistic systems, recording of vid-
eos according to movement, or online/offline status retrieval in messengers. Since
such applications are tailored to their specific needs they usually have a good per-
formance but high development costs.

* Context-aware service platforms: Jini is a typical member of the class of context-
aware service platforms. In general, service platforms aim at the rapid develop-
ment and deployment of services. In dynamic environments these service plat-
forms also offer dynamic discovery and service lookup. The development of
context-aware applications on top of an existing service platform offers a rapid
development process, reliability upon the existing basic layers and interoperability
with applications that are also based on the same service platform.

+ Context-aware pervasive environments: Pervasive environments often require
dynamic configuration and a flexible interaction between distributed entities.
Therefore frameworks for such environments have to offer advanced functionality.
Object identification, object migration, object life cycle management, flexible
processing of services, component reuse as well as platform and language inde-
pendence are only a small number of features that a pervasive environment has to
provide.

5 Comparison 93

This chapter gives an overview of the features of current context-awareness frameworks and
classifies them according to the three basic classes described above (see Table 9).

Table 9: Overview of context-awareness software and their classification

Product Class Language Platforms
SiLiCon pervasive environ- Java 1.1.8 all platforms that
ment offer a personal
JVM
Jini service platform Java 1.2 all platforms that
offer a JVM
Web Services service platform any any
ParcTab pervasive environ- Unix programming | Unix, Linux
ment environment
Context Toolkit | pervasive environ- Java 1.2 all that offer a JVM
ment
CoolTown service platform any Web server all platforms that
supported language | offer a Web server
Sentient Com- pervasive environ- any that supports all platforms that
puting ment CORBA support CORBA

Table 9 shows that the SiLiCon framework, the ParcTab environment, the Context Toolkit,
the CoolTown project and the Sentient Computing environment can be classified as perva-
sive environments. Service platforms, such as the web service initiative or Sun’s Jini frame-
work, provide support for rapid service development and deployment even in dynamic
network environments, but they do not provide support for the design of entire pervasive en-
vironments. It is, however, possible to design pervasive environments on top of existing and
well-established service platforms. The SiLiCon example implementation is running on top
of'a JDK 1.1.8 environment which means that the SiLiCon framework is runnable on top of
Java Virtual Machines which implement the Java Personal Profile. Pervasive environments
which need JDK 1.2 are not running on Java Personal Profile which means that they are not
running on mobile devices.

5.2 Universal or Practical World Model Assumption

While service platforms limit their world models to service descriptions as well as discovery
and lookup, pervasive environments use much more complex world models to identify and
to interact with other objects. Pervasive environments have to identify different objects in or-
der to interact with them or to update relations to these objects. In the CoolTown project a
PlaceManager is able to identify all objects that are in a specific place in order to update the
location of the different nomadic objects.

5 Comparison 94

The aspect of how the world model of a pervasive environment is defined plays an impor-
tant role. Universal world models or practical world models are two antithetic aspects. A
world model which is universal can describe everything. On the other hand, it is possible to
create a practical world model which is able to model only one specific situation. In this spe-
cific situation the practical world model will be intuitive, but it is hard to model other situa-
tions with it. Table 10 compares the different pervasive environments according to their
world models and classification mechanisms.

Table 10: Universal versus practical world models

Framework Description of the world model used

SiLiCon framework | Universal world model based on the ParcTab approach with
additional role-based classification features.

ParcTab Universal world model where objects are described as
dynamic environment entities with a variable collection of
attributes.

Context Toolkit Universal world model, which is able to model scenarios by

reusing context-widgets, aggregators and interpreters. Classi-
fication of entities is not supported.

CoolTown Practical world model where all objects are classified with
the three base classes Person, Thing and Place.

Sentient Computing | Practical world model where environment objects are
directly mapped into CORBA objects. According to the
CORBA object mapping the Sentient Computing project
uses a hierarchical classification model.

5.3 Adaptation

Another important aspect is the adaptation effort that is necessary to develop a new context-
aware scenario on top of a pervasive environment framework. Stand-alone context-aware ap-
plications cannot usually be adapted to other application domains. Pervasive environments,
however, offer the possibility to reconfigure them so that they fulfil new tasks or run in new
application domains.

Adaptation allows a scenario designer to reconfigure a scenario without much effort. In
order to make a framework adaptable there must be a flexible application definition process.

5 Comparison 95

Table 11 compares the adaptation possibilities of the various pervasive environments.

Table 11: Scenario adaptation possibilities of different frameworks

Framework Adaptation possibilities

SiLiCon framework | Adaptation by dynamic loading of attributes and enti-
ties. Scenario definition by XML-based configuration
files. The definition of the scenario interaction is based
on interpreted rules that can be changed at runtime.

ParcTab Flexible definition of scenarios by using dynamic envi-
ronment objects and dynamic attribute collections. It is
not possible to change a scenario at runtime.

Context Toolkit Flexible definition of scenarios by using reusable con-
text-widgets, interpreters and aggregators. Changing a
scenario is possible by loading classes dynamically.

CoolTown The scenario modelling process is more intuitive
because the CoolTown project uses only three base
classes of objects. On the other hand, the possibilities to
change a scenario at runtime are limited and the defini-
tion of the interactions tends to be complicated.

Sentient Computing | A sentient computing application is flexible within a
CORBA environment. It is hard to change the scenario
interaction at runtime. The scenario modelling process
1s more complicated compared to the other environ-
ments.

5.4 Web Compliance

The web compliance aspect evaluates the integration of web technology into the various
frameworks. Web protocols and web representation formats are designed to be accessed by
web browsers. The main advantage of web technology is that the context information is ac-
cessible for a broad spectrum of users. Everybody who uses a web browser is able to access
it. In contrast, proprietary protocols and representations are only accessible for a small group
of users. On the other hand, web technology (e.g. the HTTP protocol or XML data) is often
not as efficient as proprietary binary protocols. Table 12 compares the web compliance of
the various pervasive environments.

Table 12: Web compliance of the various pervasive environments

Framework Web compliance

SiLiCon framework | The SiLiCon framework offers an HTTP transport module which
allows sending context events over HTTP. In combination with the
SOAP event encoder the SiLiCon framework provides full Web
Service compliance.

5 Comparison 96

Table 12: Web compliance of the various pervasive environments

Framework Web compliance

ParcTab When ParcTab was designed in 1994, it was not web compliant.
Recently, however, web technology has been integrated into the
ParcTab framework. [Bo00]

Context Toolkit The Context Toolkit uses the HTTP protocol to transmit context
information which is represented in a proprietary XML format.

CoolTown The CoolTown project is completely web-based. Context informa-
tion is received, processed and forwarded by Web servers and
dynamic web server modules (e.g. the PlaceManager). The Cool-
Town project uses HTTP as the transport protocol. Complex con-
text information is represented in XML that is transformed into a
human-readable HTML format.

Sentient Computing | The original sentient computing project used proprietary protocols
for the transport of context information. Some appliances used
well-established technologies such as VNC (Virtual Network Cli-
ent).

5.5 Scalability

The scalability aspect is an important issue for pervasive environments that operate in dy-
namic network environments. In commercial setups, pervasive environments tend to have
masses of devices (e.g. in a wide-area sensor and actuator network). Mobile and embedded
devices are getting smaller and smaller while their number increases. With purely decentral-
ized P2P systems it was soon realized that without intelligent organisation of P2P networks
the number of peers is limited to a small number. Modern P2P systems use hybrid mecha-
nisms and introduce superpeers that manage parts of the P2P network. To show scalability
bottlenecks it is necessary to analyze the discovery, lookup and transport mechanisms of the
various pervasive environments in detail. Table 13 shows some scalability aspects of the var-
ious frameworks.

Table 13: Analysis of scalability aspects in different frameworks

Framework Possible scalability issues

SiLiCon framework | SiLiCon devices communicate directly with each other. The dis-
covery mechanism is based on a hybrid model where every
device scans the local subnet for other devices and uses regis-
tered addresses for global discovery. The SiLiCon framework
implements a hybrid P2P system where the major scalability
bottleneck is the discovery, which is weakened by the fact that it
uses registered addresses for global discovery.

5 Comparison

97

Table 13: Analysis of scalability aspects in different frameworks

Framework

Possible scalability issues

ParcTab

The ParcTab system is a lightweight environment that is operat-
ing on top of the TCP/IP protocol. ParcTab implements no P2P
functionality and is therefore not working in ad-hoc networks.
The ParcTab system has no major scalability bottlenecks, exept
when too many Badges are located in the same location.

Context Toolkit

The 1 to n relation between context widget and interpreter poses
a scalability problem.

CoolTown

In the CoolTown system , there could be a scalability problem
with the relationship directory, which handles many objects that
are located in the same place.

Sentient Computing

If the notification channels are not organized hierarchically, the
dissemination of the TRIPParser output poses a scalability prob-
lem.

5.6 Mobile Device Portability

Pervasive environments include a multitude of different mobile and embedded devices.
Therefore it is necessary to design pervasive frameworks such that they can be ported to such
devices. The portability of modern P2P and pervasive environments as well as service plat-

forms is an important issue. Jini for example is based on the class library of the JVM 1.2,
which makes it difficult to run it on J2ME. The same problem occurs when porting the Java

P2P framework JXTA to mobile devices. Most of the modern pervasive environments are

designed to run on desktop systems, which offer strong CPU power, large storage and rich
input/output facilities. Table 14 lists some problems that occur when the various frameworks

are ported to run on mobile devices.

Table 14: Portability aspects of the different frameworks

Framework

Mobile and embedded device portability

SiLiCon framework

The SiLiCon framework was designed to run on Java Personal
JVMs, which means that it runs on devices which offer a JVM
that supports at least Java 1.1.8. The SiLiCon framework actu-
ally runs successfully on PC104 industrial PCs, on PocketPCs as
well on embedded Linux devices.

ParcTab The ParcTab framework typically runs under Linux and in
embedded Linux environments.
Context Toolkit The Context Toolkit is running on devices that support at least

Java 1.2 which means that it is currently not possible to run it on
PocketPCs.

5 Comparison 98

Table 14: Portability aspects of the different frameworks

Framework Mobile and embedded device portability

CoolTown The CoolTown project is based on web technology. Although it
is sufficient to have thin web browser clients for receiving con-
text information, the active context processing parts have to run
in a web server environment.

Sentient Computing | The sentient computing framework is running on platforms
which provide CORBA support.

6 Context Application Scenarios 99

6 Context Application Scenarios

In this chapter some examples of context application scenarios are presented and discussed.
Since one of the major goals of the SiLiCon framework is to support rapid development of
context-sensitive applications, it is necessary to show how simple context-aware applications
can be created with this framework. Although context-sensitive applications that were im-
plemented from scratch could probably provide the same features as applications implement-
ed on top of the SiLiCon framework, the development process with the SiLiCon framework
is much easier, faster and more flexible. It just requires the implementation or reuse of con-
text attributes (i.e. wrappers for sensors or actuators), writing the XML configuration file and
designing ECA context rules that control the interaction between the entities and attributes
in the scenario.

Our examples range from simple scenarios with two entities and a small number of at-
tributes to complex scenarios with more than 20 entities on different mobile devices.

6.1 A VRML Control Scenario

Our first SiLiCon sample application shows how to model a simple but effective sensor/ac-
tuator combination. In this scenario sensoric input is used to control a VRML (Virtual Reality
Modeling Language) plugin in order to interact with a given 3D scene.

Context-sensitive applications often use 3D scenes to visualize objects or locations. The
VRML standard represents a script language for the definition of 3D scenes. It was designed
to run as a web browser plugin in order to provide 3D scenes in HTML pages. A VRML
plugin (such as CosmoPlayer or WorldView) is controlled with the EAI (External Authoring
Interface) which is a Java library. A Java applet that is running in the same HTML page as
the VRML plugin can use EAI calls to control the plugin, i.e. to scale, rotate, translate or to
change a VRML scene.

We also need a server component, which receives events from the SiLiCon framework
and instructs the applet how to change the VRML scene. Due to the security restrictions of
Java applets, the server component has to run on the machine from which the applet was
loaded, because applets are only allowed to contact servers on this machine. The server com-
ponent is implemented as a SiLiCon attribute with the name VRML that is able to receive and
to trigger context events. When an entity owns a VRML attribute it can route any sesoric in-
formation through context rules in order to control a VRML scene. Sensoric input could be
the movement of a pointing device (e.g. a mouse, trackball, joystick, tablet, touchsceen, etc.)
or a location sensor that measures the heading, pitch and roll values of the device (e.g. an
InertiaCube). Fig. 52 shows how a VRML scene can be controlled with a multitude of sen-
soric devices.

6 Context Application Scenarios 100

Entity X HTML Page

pointing attribute

~

Y
N

location attribute

~_

5 '

VRML attribute Tl E

~

Fig. 52 Control a 3D VRML scene within a SiLiCon scenario

EAI control
applet

The VRML scenario uses a location sensor, called InertiaCube, to trigger events according
to its relative heading, pitch and roll values. The collection of attributes for this demonstra-
tion scenario is defined as follows:

<Inventory>

<AttributeSequence>

<Attribute Name="ControlRules" Host="localhost" Class="...controlrules.ControlRules"/>

<Attribute Name="Location" Host="localhost" Class="...location.Location"/>

<Attribute Name="VrmlServer" Host="localhost" Class="...vrml.VrmIEAIServer">
<AttributeSpecific port="8081"/>

</Attribute>

<Attribute Name="Time" Host="localhost" Class="...time.Time">
<AttributeSpecific delay="6"/>

</Attribute>

</AttributeSequence>

</Inventory>
The Location attribute triggers events describing the heading, pitch and roll values that range
from -180 to 180 degrees. The Vrml attribute is responsible for controlling the VRML sce-
nario and connects to the applet in the HTML page. To rotate a 3D scene, the EAI library
takes the x, y and z rotation value, measured in radiants. So the heading, pitch and roll values
have to be converted in order to use them as input values for the rotation. At this point the
SiLiCon framework shows its major strenght. It is simple to write a context rule that converts
the incoming heading, pitch and roll values into the radiant format that is required by the
Vrml attribute and to route this converted values to the applet in order to perform a rotation
in the VRML scene.

In order to use a second sensoric device such as a mouse pointer, it is necessary to load
the pointing device attribute, to convert the sensoric information using a new context rule and
to route this information to the Vrml in order to perform the operation.

The context rule that performs the heading, pitch and roll conversion as well as the routing
is defined as follows:

rules for Entity X {

6 Context Application Scenarios 101

on Location.HPR_Position(double h, double p, double r) {
h =(h + 180) / 360;
p=((p+180)/360)*6.283;
r=((r+180)/360) * 6.283;
VrmIBrowser.Vrml.setValues(p - 6.283, h * 6.283, r - 6.283);

}
}

It is just a matter of configuration to distribute the scenario across different devices. The Lo-
cation attribute and the Vrm/ attribute can be loaded into separate entities, which are hosted
on two different devices.

6.2 A Context-Sensitive Emergency Scenario

The next sample scenario application was designed to provide context awareness in emer-
gency situations. The idea is to collect context information about a patient, who has problems
with his health. The patient wears a set of sensors that collect information about his physical
health and an actuator that triggers an emergency call when the patient’s health situation
changes.

Entity and attribute design. The first step in implementing the emergency scenario is to
identify all entities and attributes that may be important for this situation. The following en-
tities were identified:

* HeartPatient: The entity HeartPatient represents the patient with his sensors and
actuators. The entity of the patient (HeartPatient) contains an attribute (HeartMon-
itor) which wraps the services the heart monitor offers. The HeartPatient’s heart
monitor is responsible for monitoring the health situation of the patient.

» EmergencyDispatcher: The EmergencyDispatcher entity is responsible for the
receiving emergency calls and managing ambulances with their crews. The Emer-
gencyDispatcher contains a list of ambulances and mobile doctors in order to react

on incoming calls. It also knows where the ambulances and their crews are located
and if they are busy or not.

» AmbulanceCar: The set of AmbulanceCars is responsible for receiving emergency
calls from the emergency dispatcher and for traveling to the location of the patient.
Every AmbulanceCar entity has a crew which consists of a driver, a nurse and a
mobile doctor. Only if the complete crew is in the AmbulanceCar entity, it is able
to accept an emergency call.

* MobileDoctor: The MobileDoctor is a member of an emergency team in a specific
ambulance car.

* Hospital: The Hospital entity represents a specific hospital which should be
informed about the delivery of the patient who triggered an emergency call.

The emergency scenario is based on RFID technology to locate entities on a map and to up-
date the containment hierarchy. Every mobile container entity has an RFID attribute. To re-
solve the position of an entity on a map it is necessary to contact a RFIDResolver attribute,
which holds the mappings between RFID IDs and absolute map positions. The emergency
scenario maps a real world emergency situation to a local demonstration environment, which

6 Context Application Scenarios 102

means that indoor communication and location technology has to be used. In a real world sit-
uation these indoor solutions would be changed to outdoor sensor and network technology
as it is shown in following table:

Table 15: Indoor versus outdoor technology

Information Indoor Outdoor
Location RFID GSM cell tracking and
GPS
Communication WLAN, Bluetooth GPRS, UMTS, WLAN
Mapposition RFIDResolver delivers Navigation service deliv-
map coordinates ers map for given longi-
tude and latitude values

Scenario configuration . The emergency demonstration scenario consists of four digital de-
vices (1 Laptop, 2 iPAQs, 1 Loox), each of which hosts a context container. Every context
container is able to host a set of entities which are part of the scenario. One of the four digital
devices is a Laptop, which executes all the performance-critical tasks. It hosts the Emergen-
cyDispatcher entity, the RFIDResolver attribute and all the simulated mobile doctors and
ambulances. One of the iPAQs hosts the AmbulanceCar entity and is directly connected to a
physical ambulance car as it is shown in Fig. 53. The ambulance car contains an RFID reader,
which updates the containment hierarchy, if a tagged entity enters the car. Thus the ambu-
lance car can sense whether the mobile doctor, the driver, the patient and the nurse are on
board.

Fig. 53 1PAQ device hosting the AmbulanceCar entity, Loox device hosting the MobileDoctor entity

The physical emergency scenario is built upon a floor material which is completely tagged
with RFID transponders in order to accomplish location tracking. Furthermore, every person
is tagged with an RFID transponder in order to realize when it enters an ambulance car or the
hospital. If an ID of a tagged entity or a transponder in the floor material is detected, the

6 Context Application Scenarios 103

RFID resolver is asked about the identity of the object and its location as it is shown in Fig.
54.

LaptopContainer iPAQContainer_01

RFIDResolver:resolveRfid(,01:42:7a:03:00:0c:00:00:aa");

RFIDResolver Dr_Heinrich_Frank

RFID.resolvePosition(ident, 0, 0);

RFIDResolver:resolveRfid(,01:42:7a:03:0c:00:00:0c:03");

iPAQContainer_02

RFIDS.xml Ambulance_Munic_00

RFID.resolvePosition(ident, 2, 3);

RFIDResolver:resolveRfid(,01:42:7a:03:0a:0c:00:0c:11");

LooxContainer

RFID.resolvePosition(ident, 1, 5); Jonathen_Heart

Fig. 54 Requesting location and identification information from the RFIDResolver

After the identity and the location of an RFID transponder ID is resolved, the emergency dis-
patcher is informed about the location of the identified entity. The emergency dispatcher con-
tains a list of available emergency cars and mobile doctors together with their locations. In
case of an emergency call, the location of the patient appears on this map and a context rule
calculates the nearest ambulance that is not busy at the moment. The context rule triggers the
display of a dialog box, which proposes the human operator the selected ambulance car as an
option to select. For an emergency scenario it is important that the operator has the possibility
to select between different options which the dispatcher proposes.

The entities update their positions on the map automatically and display this information
for the operator. The entities also inform the emergency dispatcher about any changes of
their positions or their state. Depending on the tasks an entity has to perform in the scenario,
a graphical user interface visualizes the actual state of the entity on the screen.

6.3 A Context-Sensitive Office Scenario

The third context-aware sample application that is build on top of the SiLiCon framework
middleware was inspired by the research on tangible user interfaces (TUIs). Tangible user
interfaces were first mentioned by Ishii and Ullmer in 1997 [Ishii97]. They defined them as
interfaces in which physical objects play a central role as both physical representation of dig-
ital information and physical control of a digital scenarios. The word tangible derives from

6 Context Application Scenarios 104

the latin words “tangibilis* and “tangere*, which means “to touch”. Ishii and Ullmer realized
that the screen as output device is often overconsumed and in many cases not the best way
to display complex scenarios, as they showed in an urban planning scenario [Under99]. Ac-
cording to Hiroshi Ishii’s tangible user interface architecture [U1101], the division between
control and presentation should be as it is shown in Fig. 55. In Fig. 55 it is shown that the
representation of digital data is divided into two areas: physical representation (rep-p) and
digital representation (rep-d). The rep-p area is the physical representation of digital data and
the rep-d is the representation of digital data that is not represented through a specific phys-
ical object. Digital data that is represented through a physical object can be controlled phys-
ically, while the rep-d cannot be controlled physically.

physical digital
control . .
representation representation
C model)

Fig. 55 Ishii’s architecture of tangible user interfaces

physical

digital

Dice example. To understand the physical representation and control of digital information
a simple example is given. Three dices are equipped with a sensor that measures their actual
state, which is stored in a database. When a human user throws the three dices he is able to
control the values of the actual throw in the database. The state of the dices represents, phys-
ically, what the database stored for the actual throw. So the result of the actual throw is rep-
resented through three physical objects (3 dices), which means that it is a part of the rep-p
area. The database also stores the results of the last dice throws. It is useless to represent this
kind of information also through physical dices, so this kind of data is represented through
the rep-d area. A model of the dice example is shown in Fig. 56.

hvsical control physical representation of digital representation of last
Phy actual dice throw dice throws
(rep-p) (rep-d)
\ = = /\
".\ O‘l.. 6 63514..

oL 6 65411...

Fig. 56 Example of physical representation and control

The tangible user interface is able to control the digital model, because the physical repre-
sentation is directly bound to the digital model. If the physical representation changes, the
digital model changes as well. Parts of the digital model, which cannot be represented phys-
ically or need both a digital and a physical representation, can also be represented digitally

6 Context Application Scenarios 105

(e.g. on a screen). The physical representation of a digital model has the advantage that its
state is persistent and does not disappear if the digital model crashes or the power is switched
off. So if the digital model crashes, the physical representation part remains persistent.

Resource control. A major advantage of tangible interfaces is the fact that a human uses
more than his eyes to perceive the environment. To manipulate the enviroment with one’s
hands and one’s sense of touch is one of the oldest and most important advantages of human-
ity.

The idea of our sample context scenario was to combine context awareness and tangible
user interfaces, in order to manipulate complex digital environments in a more intuitive way.
This combination offers high flexibility, because these two technologies complement each
other in many cases. Context awareness provides information that could be important for the
interaction with an object and tangible user interfaces represent parts of the state of a digital
environment model and, furthermore, allow the user to interact with this model in an intuitive
way. With tangible artifacts the user is able to control the environment without deep knowl-
edge of the technology that is embedded in that environment. Context information on the oth-
er hand is used to predict the users intention when he uses a tangible artifact in different
situations and in different environments.

An example of an tangible artifact would be an object that is able to realize its three-di-
mensional position. With this information it is possible to control specific states of a digital
environment, as it was already shown in the dice example. With a rotation of this artifact it
is possible to turn a stereo’s volume up or down, or in another context it could be possible to
control the mouse cursor on a projector screen. Fig. 57 shows how a tangible artifact with
gesture recognition can be used to control various equipment via context rules. The research
project iStuff gives a good overview about different kinds of sensoric information that could
be used to realize specific tangible artifacts [1Stuff].

rule set for ,Projector”
presentation context

ﬁ__. Tanglble on gesture(right) -> next slide | .
i Artifact on gesture(left) -> prev slide | || presentation
s on gesture(click) -> menu [CDmpOant
gesture
component
rfid g rule set for ,Stereo" = -
sopponien presentation context =
. ®
component on gesture(right) -> next song S at®

on gesture(left) -> prev song
on gesture{up) -> louder

on gesture(down) -> softer prese ntation

component

rule set for presentation
context X

Fig. 57 Dynamic rule sets for different presentation contexts

6 Context Application Scenarios 106

The context-aware tangible scenario uses RFID tagged objects to represent a digital resource.
The user is able to use any object as long as the object is tagged with an RFID transponder
(e.g. Cellphones, markers, rubbers, CDs, ...). The user is also able to decide which digital re-
source he would like to bind to the tagged object. Most of the time the user will bind resourc-
es like PowerPoint presentations or video and music files. The goal of the context-aware
tangible scenario is to bind such a resource to any tagged real world object and to integrate
a position sensor into the real world object in order to control the resource.

Presentation. Every real world object is tagged with an RFID transponder, which enables
the contactless identification of objects using the ID of the transponder. The user is now able
to take any object and mark it with a transponder, in order to use it as a tangible artifact. The
tangible artifact stands then for a digital resource. It represents the virtual location of the dig-
ital resource, which is stored on a globally available network drive. The SiLiCon framework
determines the context in which the digital resource should be used as a result of the virtual
location of its tangible artifact. To bind a tangible artifact to a digital resource, it is necessary
to put it in some sort of a loading area. Fig. 58 shows a desktop workplace with a loading
area (which is realized through an RFID antenna, which is able to sense RFID transponders).
At the loading area two very different RFID tagged objects are used as tangible artifacts: a
cellphone and a marker pen. When the RFID antenna senses a tagged object it shows an im-
age of the object on the workplace desktop. The user is now able to drag and drop e.g. an
PowerPoint presentation onto the image to bind it to the real world object.

Fig. 58 Loading of digital resources on any tangible artifacts.

6.3.1 Hardware Setup

To combine context sensitivity with tangible user interfaces some standard technologies are
used.

Tangible resource binding . To realize the binding of digital resources to real world objects,
RFID technology is used. In order to sense objects that contain a transponder, an RFID reader

6 Context Application Scenarios 107

device is used. The antenna of this reader is able to recognize the ID of a transponder that is
in its sensing range.

If the user puts a tagged object (e.g. a pen) next to a reader which is attached to a work-
station, the reader entity triggers a context event. The workstation entity retrieves the event
and displays the tagged object as an icon on the screen. The user is now able to drag and drop
digital resources (e.g. a PowerPoint file) onto the icon and therefore to bind them to the
tagged object. The user can then go to a presentation room, where there is also an antenna
installed on the table, which triggers a context event when a tagged object is placed next to
it. Interested entities can catch this event with a context rule and can handle it accordingy. A
beamer entity, for example, could display the mapped digital resource on the wall, as it is
shown in Fig. 59.

(LSRR T ST TE L e |
Tt
1 ’ -
\Q |

AT e Bt ot L L
.\- { .
\ " A

Fig. 59 RFID antenna triggers a context event when the tagged object is put on top of the table.

The SiLiCon framework is responsible for delvering the context event that appears when the
user puts the tagged object next to the RFID antenna. In a presentation context, the presen-
tation entity is able to receive this event and to download the attached digital resource from
the server. If the presentation entity knows the kind of the downloaded resource, it can de-
liver the resource to the appropriate application (e.g. a mediaplayer or a presentation program
like PowerPoint).

Tangible resource control. While the presentation entity displays the digital resource that is
associated with a tagged object, it is possible to control the resource with embedded sensors.
To enable an object to act as a tangible artifact that can control associated digital models, it
is necessary to embed sensors and actuators into this object.

The intention in our sample application was to control the associated resources as natural-
ly as possible with a tangible artifact. Therefore we decided that the tangible artifact should

6 Context Application Scenarios 108

be the same physical object that was tagged and associated with a digital resource. In Fig. 58
and Fig. 59 this physical object is presented as a light pen that is tagged with an RFID trans-
ponder.

Today, one of the most common personal artifacts, that nearly everybody takes along, is
a mobile phone. So a mobile phone is a good choice for a tagged object that acts as a tangible
artifact, beside the functionality that such a phone normally provides. An example is shown
in Fig. 60, where a location tracker with three degrees of freedom is used to sense user ges-
tures, in order to control the associated digital resource. Tests have shown that for this appli-
cation no complex gesture recognition is necessary.

RFID transponder

InertiaCube,
three degrees of
freedom location
tracker

o~
egnje|jdou)
>

Fig. 60 Usage of a mobile phone with transponder and location sensor as a tangible artifact

Heading, pitch, and roll information are used to control, for example, the mouse cursor on a
projection screen, as it is shown in Fig. 61. A context rule, that catches the location informa-
tion from the InertiaCube attribute, translates the heading and pitch information into sceen
coordinates. The roll location is used to simulate a mouse press, when a certain roll value
(~20°) is reached. If the cursor position remains in the same position for a certain amount of
time, the DesktopControl attribute sends a mouse press event to the desktop. The following
two context rules show how to trigger a mouse press event and how to change the mouse po-
sition according to the heading and pitch values. If a HPR Location event occurs both rules
are activated.
on Location.HPR_Position(double h, double p, double r) {

if (r > 20)
Beamer.Win32DesktopCtl.sendCursorPress();
}

on Location.HPR_Position(double h, double p, double r) {
h =(h + 180) / 360;
p=(p+180)/360;
Beamer.Win32DesktopCtl.sendCursorMove(h, p);

}

The performance of this scenario over a WLAN is good enough, so that the control of a desk-
top over the network is possible without any disturbing delays.

6 Context Application Scenarios 109

The mouse cursor control on a projector screen is quite intuitive. With a tangible artifact
shown in Fig. 60 it is no problem to work on a projected desktop without any prior training
or instructions.

-
]

heading

B L T [T TR T e e it S L
-
-

Y

Fig. 61 Translation of heading and pitch values to projector screen coordinates

6.4 An Industrial Maintenance Scenario

The next sample application demonstrates the advantages of the SiLiCon framework in a typ-
ical industrial maintenance scenario. The basic idea is, to support service personal by provid-
ing detailed machine failure descriptions and possible recovery strategies.

The industrial maintenance scenario consists of a number of machines, which operate as
state machines. The machines are simulated by context entities and their state machines are
modeled by sets of context rules. To visualize the state changes of a machine we decided to
use a robot, which is shown in Fig. 62. The robot is controlled over a serial connection to a
PC104 mainboard, which uses a wireless LAN card to provide network access. The PC104
embedded computer hosts a SiLiCon container entity which is able to host a set of context
entities, e.g. the Robot entity. The robot model supports a set of operations, implemented in
a RobotCtl attribute. The RobotCtl attribute also defines the operating ranges in which the
robot is able to move without destructing its hardware.

When the robot, or any other simulated machine produces an error, it triggers a context
event which contains the failure number and a short failure description. A context rule routes
the failure event to any entity which is acting in the role of a service engineer.

6 Context Application Scenarios 110

Fig. 62 Model of a SiLiCon-enabled industrial robot device

Service engineers are working on their service terminals and use portable devices, e.g. PDAs,
to carry machine information, which is necessary to solve a specific problem. When a ma-
chine sends a failure event, an HTML page appears on the service engineer’s terminal. This
page contains detailed information about the machine, the failure and the possible recovery
strategies. According to the fact that a SiLiCon device is able to understand HTTP GET calls
by using the SOAP over HTTP transport module, it is possible to embed machine controls
directly into the HTML page. The following rule set shows how to define a state machine,
which triggers the robot to execute a sequence of defined steps. The event RobotStop is trig-
gered when the robot reaches a certain absolute position. The operation posAbsol ut (| ong
al, long a2, long a3, |ong a4) moves all four motors of the robot to a given absolute
position. The values al to a4 represent the absolute step positions of the four robot motors.

rules for Robot {

on RobotCtl.RobotStop(long a1, long a2, long a3, long a4) {
Robot.RobotCtl.posAbsolut(100, a2, a3, a4);

}

on RobotCtl.RobotStop(100, long a2, long a3, long a4) {
Robot.RobotCtl.posAbsolut(60, 100, a3, a4);

}

on RobotCtl.RobotStop(60, 100, long a3, long a4) {
Robot.RobotCtl.posAbsolut(0, 0, 0, 0);

}
..

}
Fig. 63 shows the interaction between a defective machine and a discovered service terminal.
The entity Robot triggers a failure event to any of the discovered entities that act in the role
of'a service terminal. The robot also triggers its state transition events, in order to perform its
normal movements.

6 Context Application Scenarios 111

entity ,Robot* failure event role , Service Terminal“
triggered
:?;r?stitsi})a,:: RobotCil ./ Notification
Lookup Lookup
RFID RFID
DynamiclLoader LoadArea
RuleRepository
legend

attribute loaded when a
specific event occurs

(I
[] attribute actually loaded
-4—— context event

-9

context event with role destination

Fig. 63 Industrial machine (robot model) triggers a failure event to any service terminal

The RuleRepository attribute, of the entity Robot, is loaded automatically, when the RFID
attribute encounters that service personal is around the machine. To load the RuleRepository
attribute on demand means to increase the security of the machine according to changes from
third persons. The dynamic loading and unloading of attributes can also be specified with
context rules, which means that this mechanism is extremely flexible. In the maintenance
scenario these attributes are loaded when a registered RFID transponder of a service techni-
cian appears in the range of the machine’s RFID reader. They are unloaded when all trans-
ponders leave the range of the machine’s RFID reader.

The reuse of the LoadArea attribute, which was used in the office scenario to display
RFID tagged objects, adds additional functionality to the maintenance scenario. A service
terminal receives failure events from the industrial machines and automatically displays the
failure information as well as an HTML page with recovery information. When a service en-
gineer moves his mobile device over the RFID reader of the service terminal a load area icon
is displayed. The service engineer is now able to drag the failure description page onto the
load area, in order to automatically take the information with him.

Fig. 64 shows a failure description page informing about failure number 3003, which also
offers a repair procedure that a service technican can execute. The HTML form has also a
text field into which the service engineer can enter a new context rule, which can then be in-
serted into the machine’s rule repository. The machine’s behavior can therefore be changed
at runtime, which offers a convenient way to repair the machine.

6 Context Application Scenarios 112

]}F_e Robot X056 Service Manual Page - Mozilla - 10| x|

. File Edit v¥ew Go Bookmarks Tools ‘Window Help |

» ‘8 Home | EJBookmarks %% Google S5 Wireless Netw.., C3magazines % LEC English-G... %% sswBotlog i sswEok hkkp »
3 |

Service Manuals for Industry Robot Type x036

Fault Repair Procedures

Failure Nr. 3003: Obstacle disables the robots full motion range

Description.:
Fepair praceass:
=et the robot motion range to a new value according to the position of the obstacle. The failure correction context

tule automatically cotrects the robots motion. Following example 15 used to change the robots motion range
within a contest rle:

Context rule source entity; |Pu:|b|:|t

rules for Robot_x056 {

on RobotCtr.absolutPos(long wl, long wl, long mw2, long m3)l
i

}

Actvate Fule | Feset |

[= & 3 &2 |Done == =] |2 s

Fig. 64 Sample failure description page with dynamic repair rule

The following context rules enable the appearance of a load area and the mapping of resourc-
es with a given RFID ID.

rules for ServiceTerminal {
string idg;

on HttpResourceAtr.ResolvedResourceEvent(string rname) {
ServiceTerminal.LoadArea.addResource(rname);
}

on MouseDropArea.ResourceDropEvent(string fileName) {
ServiceTerminal.HttpResourceAtr.uploadResource(idg,fileName);
ServiceTerminal.LoadArea.setimageURL("http://192.168.25.1/context/"+idg+"/icon.gif");
ServiceTerminal.LoadArea.show();

ServiceTerminal.LoadArea.addResource(fileName);

}

on MouseDropArea.ContainerClearEvent() {
ServiceTerminal . HttpResourceAtr.resourceClear(idg);
}

on MouseDropArea.MenuChooseEvent(string fileName) {

6 Context Application Scenarios 113

ServiceTerminal.SystemCalls.explore("http://192.168.25.1/context/"+idg+"/"+fileName);
}

on Rfid.TagDisappeared(string id) {
ServiceTerminal.LoadArea.clearResources();
ServiceTerminal.LoadArea.hide();

}

on Rfid.TagAppeared(string id) {
idg = id;
if (ServiceTerminal.HttpResourceAtr.CFresourceExists(id)) {
ServiceTerminal.HttpResourceAtr.resolvelD(id);
}else {
ServiceTerminal.HttpResourceAtr.registerID(id);

}
ServiceTerminal.LoadArea.setimageURL("URL/"+id+"/icon.gif");
ServiceTerminal.LoadArea.show();

6.5 A Mobile Robot Control Scenario

The mobile robot control scenario was designed to show how an autonomous, mobile device
can be controlled by context rules. The mobile device communicates over a WLAN connec-
tion and is able to move around on the university campus. The university campus is com-
pletely covered with WLAN access points, so that the mobile robot always has a managed
WLAN connection with the Internet. According to a wide range of different sensors that are
mounted on the mobile robot, the control of this device is a good example for the power of
the SiLiCon framework.

6.5.1 Hardware Setup

The core of the mobile robot scenario is built on an integrated PC104 industrial computer
stack that offers a 200 MHz CPU. The PC104 stack that is connected to this CPU module
contains a GPS and GSM module, a digital and analog IO board, a magnetic field compass
and a pitch sensor. The sensor phalanx, with which the mobile robot discovers its environ-
ment, contains 6 ultrasonic distance sensors, 8 infrared short range distance sensors, 6 light
sensors, 4 bumpers and one web camera. Fig. 65 shows the assembled mobile robot.

6 Context Application Scenarios

Fig. 65 Pictures showing the assembled mobile robot

7 Conclusions 115

7 Conclusions

This chapter gives a summary of the goals that were achieved and an overview about possible
future enhancements, that could be integrated into the SiLiCon framework. Due to a lack of
manpower some interesting features, such as a visual context scenario builder, were only dis-
cussed but not implemented until now.

7.1 Summary

In this PhD work a software framework was developed that supports the design and imple-
mentation of context-aware applications in pervasive environments. The framework sup-
ports a hierarchically organized collection of entities and manages their life cycles as well as
the object migration process.

The framework is completely event-based, which means that all entities in a context-
aware scenario are communicating via events. A pluggable transport and encoding layer is
introduced, that supports the integration of various transport protocols and data encodings.
Events are transported transparently with any chosen transport and encoding module. The
transparent transport mechanism in combination with the event communication enables a
simple and dynamic distribution of complex interaction scenarios. Two example transport
and encoding modules were implemented: the HTTP and TCP transport modules and the se-
rialized XML and SOAP encodings. By using the HTTP transport protocol in combination
with the SOAP event encoding module the framework offers full web service integration.

The framework offers a hybrid lookup module, which is necessary to discover other
lookup modules on distributed devices within the local subnet. The hybrid nature of the
lookup also allows the registration of specific central lookup addresses, to decrease the scal-
ability problems of broadcast or multicast discovery.

The framework covers the whole context-awareness life cycle reaching from the gather-
ing of raw context information, over context transformation to actuator triggering. Context
attributes wrap sensor and actuator hardware. A rich collection of sensor and actuator ab-
stractions, as well as their reuse, enables rapid application development for context-aware
systems.

The major advantage of the framework—compared to other solutions—is that all interac-
tions are modeled by interpreted ECA (Event Condition Action) context rules. Interpreted
context rules provide a flexible solution for the definition of complex, distributed scenarios.
The framework allows the dynamic definition and deployment of new rules and change of
existing rules at run time.

The framework allows the dynamic classification of discovered entities according to a
role-based model, which solves many of the problems that appear with the use of a static clas-

7 Conclusions 116

sification hierarchy. Entities are able to act in more than one role and applications have the
possibility to define new, specific roles at runtime. The framework does not need a central
class hierarchy which has to be consistent with respect to all distributed entities.

Last but not least, the framework is designed to run on mobile and embedded devices,
which means that it is optimized towards resource-efficient operation.

7.2 Future Work

This section gives an overview about possible future innovations in the SiLiCon framework.
7.2.1 Visual Builder Tool for Context Scenarios

The SiLiCon framework offers rich configuration possibilities for the definition of new con-
text scenarios. A context scenario, which consists of reused sensor and actuator abstractions
and context rules, can be designed without compiling a single line of program code. These
powerful scenario configuration possibilities call for a visual builder tool. It is even thinkable
to define plugins for existing visual building environments in order to design context scenar-
10s with them (e.g. Microsoft Visio).

A visual builder environment could also discover and visualize existing scenarios in a lo-
cal subnet. Since the SiLiCon framework allows the adition of new context rules to running
context-aware systems, it is simple to change the scenario behavior with a visual builder tool.
A prototype of a visual context scenario builder was already implemented and successfully
used for scenario development and debugging purposes.

A complete implementation of a visual builder tool could manage the design of new enti-
ties and attributes, as well as provide an attribute repository of already existing sensor and
actuator abstractions. Furthermore, the visual builder tool could support the design of context
rules by drag and drop of entities and attributes. A visual builder tool could also manage the
deployment of entire scenarios at runtime and the gathering and visualization of already run-
ning scenarios.

7.3 Security Considerations

One of the most underestimated issues of pervasive environments and P2P computing in ad-
hoc networks concerns the security. Since ad-hoc networks do not offer the possibility to
contact a global trusted authority (e.g. a PGP key server), it is hard to verify the identity and
the trustworthyness of a communication partner. On the other hand, local ACLs (Access
Control Lists) that contain the public key of trusted communication partners could solve this
problem. A problem with ACLs that are stored locally on a device is the consistency and that
objects that are not in the list are excluded from being communication partners.

Another approach is the use of a bonus and malus system that remembers successful in-
teractions with communication partners and penalizes failed or defective interactions.

For the SiLiCon framework we considered integrating the ACL approach where the user
is able to specify or to accept discovered communication partners. Additionally, it was dis-

7 Conclusions 117

cussed to implement a policy-based mechanism to control the access of resources on a finer
granular level.

The actual implementation of the SiLiCon framework offers interfaces that were designed
to integrate ACL and policy-controlled resource access but at the moment there is no con-
crete implementation of such security modules.

7.4 Rule Consistency Checks and Advanced Reasoning

A problem that occurs with context rules as interpreted state transitions, is to keep the rules
consistent. A scenario designer could specify two rules which react on the same event with
contradictory actions. It is also possible that rules lead indirectly to the same contradictory
action. Generally, contradictory actions are the result of an incorrect scenario modelling, but
it is hard for a scenario designer to keep track of all context rules in a large distributed sce-
nario without any tool support.

A possible solution for the consistency problem on local machines would be the use of an
existing expert system shell (e.g. the Java Expert System Shell, short JESS [JESS]). A state
transition would be directly routed to the expert system shell, where all the ECA rules are
declared and checked for consistency. The expert system shell is then responsible for the re-
sulting action.

To use an expert system shell for controlling the ECA state transitions offers another in-
teresting advantage. It is possible to reason about the current state of an entity and about pos-
sible future states.

The expert system shell solution for rule consistency checking works only on local devic-
es. Distributed consistency checks are hard to realize and in ad-hoc networks the problem is
even worse.

8 References

118

8 References

[ABa]

[Ap97]

[Ar99]

[Be03]

[Bo00]

[Br02]

[C099]

[CORBA]
[Da02]

[Dey01]

[EBNF]

[Enhydra]

[Fer03]

[Fer02]

Want R., Hopper A., Falcao V., Gibbons J., The Active Badge Location Sys-
tem, ACM Transactions on Information Systems, Vol. 10, No. 1, January
1992, pp 91-102.

Appel W. Andrew, Modern Compiler Implementation in Java, Camebridge
University Press, 1997.

Arnold D. et al, “How and Why You Will Talk to Your Tomatoes”, Proceed-
ings of the Embedded Systems Workshop Cambridge, Massachusetts, USA,
March 29-31, 1999.

W. Beer, V. Christian, A. Ferscha, L. Mehrmann, “Modeling Context-aware
Behavior by Interpreted ECA Rules”, Euro-Par 2003, Springer Verlag, LNCS
2790, pp. 1064-1073, 2003.

G. Borriello, R. Want: Embedded Computation Meets the World-Wide-Web,
Communications of the ACM, May 2000, Vol. 43 No.5. pp59-66.

Bray J. and Sturman F. Ch., “BLUETOOTH, Connect Without Cables*, Pren-
tice Hall 2001.

Corson S., Macker J., Cirincione G., Internet based mobile ad hoc network-
ing, IEEE Internet Computing, IEEE 1999.

Common Object Request Broker Architecture (CORBA), www.corba.org.

C. Dabrowski and K. Mills, "Understanding Self-healing in Service Discov-
ery Systems", Published in Proceedings of the First ACM SigSoft Workshop
on Self-healing Systems (WOSS '02), November 18-19, 2002, Charleston,
South Carolina, ACM Press, pp. 15-20.

Anind K. Dey, Daniel Salber and Gregory D. Abowd, A Conceptual Frame-
work and a Toolkit for Supporting the Rapid Prototyping of Context-Aware
Applications, Human-Computer Interaction (HCI) Journal, Volume 16 (2-4),
2001, pp. 97-166.

International Organization for Standardization, Extended BNF, ISO/IEC
14977, http://www.iso.org/iso.

Enhydra Open Source Java/XML application server, founder of kXML and
kSOAP, www.enhydra.org.

A. Ferscha, S. Vogl, W. Beer, “Context Sensing, Aggregation, Representation
and Exploitation in Wireless Networks”, Future Generation Computing Sys-
tems, North Holland, 2003.

A. Ferscha, S. Vogl, W. Beer, “Ubiquitous Context Sensing in Wireless En-
vironments”, 4th DAPSYS (Austrian-Hungarian Workshop on Distributed

8 References

119

[Fer01]

[Fi00]

[Frost]

[Gnut]

[He01]

[Ho02]

[HPO1]

[Tpi01]

[IRIS]

[Ishii97]

[Jini]
[JXTA]

[KXML]
[MoCo]
[Nap]
[Onto]
[ORL]

[OSI]

and Parallel Systems), Kluwer Academic Publisher, 1-4020-7209-0, 88-106,
2002.

A. Ferscha, W. Beer, W. Narzt, “Location Awareness in Community Wireless
LANSs”, Informatik 2001: Wirtschaft und Wissenschaft in der Network Econ-
omy - Visionen und Wirklichkeit, Tagungsband der GI/OCG-Jahrestagung,
25.-28.September 2001, Universitidt Wien, 3-85403-157-2, 190-195, Septem-
ber 2001.

Finkenzeller Klaus, “RFID-Handbuch, Grundlagen und praktische Anwend-
ungen induktiver Funkanlagen, Transponder und kontaktloser Chipkarten”,
Hanser Verlag 2000.

Frost and Sullivan, Bluetooth Market Competitive Analysis, http://
www.wireless.frost.com/.

Matei Ripeanu and Ian Foster, Mapping the Gnutella Network: Properties of
Large-Scale Peer-to-Peer Systems and Implications for System Design, 1st
International Workshop on Peer-to-Peer Systems (IPTPS’02), Cambridge,
Massachusetts, March 2002.

Hendrickson K. et al., “Infrastructure for Pervasive Computing: Challenges”,
Tagungsband der GI/OCG-Jahrestagung Sep. 2001, Wien.

Hodes, Czerwinski, Zhao, Joseph, and Katz. “An architecture for secure
wide-area service discovery”, Wireless Networks, March 2002.

Tim Kindberg et. al., People, Places, Things: Web Presence for the Real
World, HP Laboratories Palo Alto, HPL-2001-279, October 31st, 2001.

Diego Lopez de Ipifia, Sai-Lai Lo , ,,Sentient Computing for Everyone* Third
IFIP WG 6.1 International Working Conference on Distributed Applications
and Interoperable Systems (DAIS, Series ISBN 0-7923-7481-9, Pages 41-54,
Kluwer Academic Publishers, September 2001).

IRIS: Infrastructure for Resilient Internet Systems, Massachusetts Institute of
Technology, http://iris.lcs.mit.edu/.

Ishii, H. and Ullmer, B. “Tangible Bits: Towards Seamless Interfaces between
People, Bits, and Atoms.” In Proceedings of CHI’97, pp. 234-241.

Sun Microsystems Jini Technology, http://wwws.sun.com/software/jini/

Sun Microsystem’s Java based P2P development framework JXTA, www.jx-
ta.org.

XML processing library for mobile devices, http://kxml.enhydra.org/
Jorg Roth, “Mobile Computing”, dpunkt.verlag 2002.

Napster, P2P resource sharing application, www.napster.com.

On To Knowledge Organisation, http://www.ontoknowldge.org

Ward A., Jones A., Hopper A.. A New Location Technique for the Active Of-
fice. IEEE Personal Communications, Vol. 4, No. 5, October 1997, pp. 42-47.

International Standard Organisation ISO/OSI Open System Connection,
WWW.1s0.01g.

[Oxy]

[P2PHP]

[P2PSim]

[ParcTab]
[Per01]

[PJSpec]

[PTab95]

[RDF]

[RFC2131]
[RFC2290]

[Sch94]

[Sen]

[SeWeb]

[SmarTire]

[SOAP]

[Tex]

[Toh]

[UDDI]

[U1101]

Project Oxygen, Massachusetts Institute of Technology, http://oxy-
gen.lcs.mit.edu.

Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagarajal, Jim
Pruyne, Bruno Richard, Sami Rollins 2 , Zhichen Xu, Peer-to-Peer Comput-
ing, HP Laboratories Palo Alto HPL-2002-57 March 8th , 2002.

A simulator for peer-to-peer protocols, Massachusetts Institute of Technolo-
gy, http://www.pdos.lcs.mit.edu/p2psim/.

The Xerox PARCTAB, http://www.ubiq.com/parctab/.

Hansmann U., Merk L., Nicklous M., Stober Th., “Pervasive Computing
Handbook”, Springer-Verlag Berlin 2001.

Java Community Process, JSR-000062 Personal Profile Specification, http://
jep.org/aboutJava/communityprocess/final/jsr062/.

Roy Want, Bill N. Schilit, Norman I. Adams, Rich Gold, Karin Petersen, Dav-
id Goldberg, John R. Ellis and Mark Weiser, The PARCTAB Ubiquitous
Computing Experiment, Technical Report CSL-95-1, Xerox Palo Alto Re-
search Center, March 1995.

World Wide Web Consortium, Resource Description Framework (RDF), ht-
tp://'www.w3c.org/RDF/.

RFC 2131, Dynamic Host Configuration Protocol. R. Droms. March 1997.

RFC 2290, Mobile-IPv4 Configuration Option for PPP IPCP. J. Solomon, S.
Glass. February 1998.

Schilit, B., Adams, N., and Want, R. Context-Aware Computing Applica-
tions.

Sentient Computing Project, AT&T and Cambridge University Engineering
Department.

Semantic ~ Web Organisation, http://www.semanticweb.org/resourc-
es.html#publications

SmarTire Systems, company that produces tire monitoring systems for the au-
tomotive and transportation industries, www.smartire.com.

World Wide Web Consortium, Simple Object Access Protocol (SOAP), http:/
/www.w3.org/TR/2003/REC-soap12-part1-20030624/.

Texas Instruments RFID transponder form factors, http://www.ti.com/tiris/
docs/products/transponders/transponders.shtml

C.-K. Toh, Richard Chen, Minar Delwar, and Donald A 11 e n, Experimenting
with an Ad-Hoc Wireless Network on Campus: Insights and Experiences,
School of Electrical and Computer Engineering.

Universal Description, Discovery and Integration (UDDI), http://www.ud-
di.org.

Ullmer, B. and Ishii, H. “Emerging Frameworks for Tangible User Interfaces”
In “Human-Computer Interaction in the New Millenium” Addison-Wesley,
August 2001, pp. 579-601.

8 References

121

[Under99]

[Wa00]

[Wa02]

[WebWall]

[Wei91]

[Wei93]

[WSDL]

[XSD]

Underkoffler, J., Ishii, H. “Urp: A Luminous-Tangible Workbench for Urban
Planning and Design.” In Proceedings of CHI’99, pp. 386-393.

B. Warneke, B. Atwood, K.S.J. Pister, "Preliminary Smart Dust Mote," Hot
Chips 12, Palo Alto, California, August 13-15, 2000.

Want, R., Pering, T., Borriello, G., Farkas, K., "Disappearing Hardware",
IEEE, Pervasive Computing Journal, Vol. 1. Issue 1, pp36-47, April 2002.

A. Ferscha, G. Kathan, S. Vogl, WebWall - An Architecture for Public Dis-
play WWW Services, WWW2002: Middleware and Applications, Honolulu,
Hawaii, USA, May 2002.

Mark Weiser, The Computer for the Twenty-First Century, Scientific Ameri-
can, September 1991.

M. Weiser, Some Computer Science Issues in Ubiquitous Computing. Com-
munications of the ACM, 36(7), 1993, pp. 74-84.

World Wide Web Consortium, Web Service Description Language (WSDL),
http://www.w3.0rg/2002/ws/desc/.

World Wide Web Consortium, XML Schema Definition language, http://
www.w3.org/XML/Schema.

8 References

122

Lebenslauf

Personliche Daten

Name
Geburtsdatum
Geburtsort

Ausbildung
1987 - 1995
1995 - 2000
2000 - 2004
Berufslaufbahn
1997

1998

1999

1999

2000
2000 - 2004

2000 - 2004

Wolfgang Beer
03.08.1977
Steyr

Bundesrealgymnasium Kirchdorf/Krems
Studium der Informatik an der Johannes Kepler Universitit Linz
Doktoratsstudium an der Johannes Kepler Universitét Linz

Technologiepraktikant im Technologiezentrum Steyr
Technologiepraktikant im Technologiezentrum Steyr

Java Entwickler im Futurelab des Ars Electronica Centers Linz
Werkstudent bei Siemens Miinchen/Perlach,

Abteilung Zentrale Technik Software Engineering 1 (CT SEI)
Projektmitarbeiter Ars Elektronica Center (WiFi-Projekt)
Assistenzstelle am Institut fiir Systemsoftware an der Johannes
Kepler Universitit bei Prof. Mdssenbdck

Mitarbeiter in einem Kooperationsprojekt mit Siemens
Miinchen (Abteilung CT SE2)

